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Abstract: Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical
properties and broad usefulness. The special properties resulting from the reduction of the material
size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs)
more popular in numerous consumer products. In recent years, particular attention has been drawn to
the development of various methods of ZnO NMs synthesis, which above all meet the requirements of
the green chemistry approach. The application of the microwave heating technology when obtaining
ZnO NMs enables the development of new methods of syntheses, which are characterised by, among
others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration,
low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development
of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined
properties. The present review aims to discuss the state of the art regarding the microwave synthesis
of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and
new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and
compared with conventional heating and areas of application are presented. The final part of the
paper presents reactants, parameters of processes, and the morphology of products, with a division of
the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal,
and hybrid methods.

Keywords: zinc oxide (ZnO); nanostructures (NSs); nanomaterials (NMs); nanoparticles (NPs);
microwave heating; microwave assisted synthesis; microwave synthesis; microwave reactors

1. Introduction

1.1. Nanotechnology

Nanotechnology is one of the most rapidly developing disciplines of science and technology.
It was the reason for the global industrial revolution of the 21st century [1–10]. At present, this is a
leading technology within various research areas, such as: physics, biology, chemistry, biochemistry,
biotechnology, medicine, materials and biomedical engineering, electronics, optoelectronics,
mechatronics, spintronics, energy generation, food and agriculture, environmental protection,
and interdisciplinary fields [11–38]. This technology enables testing, controlling, regulating, modifying,
processing, producing, and using structures in which at least one of the dimensions does not exceed
100 nanometres (1 nm = 10−9 m) [39]. Materials in the nano-scale are characterised by new specific
properties and phenomena, which sometimes considerably deviate from the characteristic properties of
the same materials appearing in the micro-scale [40–50]. The observed changes to the physicochemical
properties are caused primarily by two factors, namely the quantum confinement of electrons and
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increased share of surface atoms/ions in relation to atoms/ions present inside the particle. The big
development of the specific surface area of the nanomaterial leads to an increase in the number
of unsaturated coordination centres, defects and stresses in the crystal lattice, and in the chemical
reactivity of particles [51,52].

Nanotechnology enables the application of nanomaterials to create innovative products, devices,
and complex systems that make use of material properties in the nano-scale [11]. Products developed
and created thanks to the use of nanotechnology are present in all aspects related to the human activity
on Earth and in the outer space [2–11,53–67]. The current research concerning the applications of
nanotechnology in the broadly understood catalysis, optoelectronics, microelectronics, biomedicine and
pharmacy concentrate on the control of the physicochemical properties of nanostructures (NSs) [68,69],
including of the nano zinc oxide (ZnO) [70]. Numerous tests related to the use of nano ZnO for
application purposes are in progress and attempts are made to produce them on an industrial scale.
The dynamic development of methods of repeatable production of nano ZnO, characterised by high
purity, controlled properties, high efficiency, and shortest synthesis duration possible, is desirable [71].

1.2. Bulk ZnO: Properties and Application

Owing to its exceptional physical (Table 1) and chemical properties, ZnO counts as a multifunctional
material [72–75]. Its properties include high electrochemical coupling coefficient, broad range of
radiation absorption, high photostability, low toxicity, biocompatibility, and biodegradability [76].
It occurs naturally in Earth’s crust in the form of a mineral called zincite (Zn1−xMxO). Zincite rarely
occurs in a pure form; most often it includes dopants of other bivalent metals (among others: Mn(II)
and Fe(II)), which is manifested in various colours of the mineral, among others, red, red and yellow,
orange, and brown [77]. ZnO is insoluble in water and its powdered form is white. Due to its
amphoteric properties it reacts both with acids and bases. ZnO can crystallise in three primary crystal
systems: hexagonal wurtzite, cubic zinc blende, and cubic rocksalt (Figure 1). In normal conditions,
the thermodynamically stable crystal structure of ZnO is wurtzite (Figure 2) [78]. Hexagonal ZnO
is an II–VI semiconductor characterised by a wide band gap. A wide band gap (3.37 eV) and a
high bond energy (60 meV) make ZnO a subject of enormous interest as regards applications in
optoelectronics and electronics (among others, voltage dependent resistors) [79,80]. Owing to its
antibacterial (disinfecting) properties, ZnO is widely applied as an ingredient of medications for
various purposes [81,82]. The earliest information about the use of ZnO as an ingredient of therapeutic
ointments for treating skin boils and ulcers comes already from 2000 BC [83–86]. It is common
knowledge that ZnO was widely produced and used in the 13th century in Persia, where it was
applied in treatment of eye inflammation and production of brass [86]. ZnO accelerates wound healing,
which is why it is used as an ingredient of pastes (e.g., zinc paste) for treating skin inflammations
(among others, acme, skin eruptions) and against itching. It is also commonly used in dentistry, e.g.,
as temporary tooth dressing [87] and root canal filling materials for deciduous teeth [88]. Moreover,
ZnO is used as an additive in feed for pigs, where it helps protect piglets from diarrhoea by inhibiting
the growth of pathogenic flora [89,90]. In the past, ZnO was also an ingredient of a medication for
treating diarrhoea in humans, but at present, it is used in the oral form, most often as an ingredient of
food products and dietary supplements, where it acts as a source of zinc (Zn2+). Zinc is the second
most important trace element in the human body after iron, as it fulfils the catalytic, structural and
regulatory function. The average zinc (Zn2+) content in the organism of an adult is 2–3 g [91], while the
recommended daily average dose for a healthy adult is 8–11 mg [92]. ZnO is used as an ultraviolet
(UV) radiation filter in sunscreen cosmetics (creams, balms, lotions). Nowadays ZnO is commonly
used as an additive in such products as pigments (zinc white, zinc green), flame retardants, cements,
ceramics, porcelain, glass, plastics, sealants, adhesives, lubricating oils and paints [70,76,89,90,93,94].
The presence of ZnO in paint, apart from changing the colour, contributes also to providing the paint
coat with anti-corrosion and antifouling properties. The most important area of ZnO application is
the rubber industry, where it is widely used as an activator of the conventional process of sulphur
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vulcanisation of natural rubber [95]. At present, as much as ca. 50% of the produced ZnO is used for
the vulcanisation of rubber, which is a material for manufacturing tyres, sports equipment, garden
and industrial hoses, shoe soles, belts, and other rubber products [96]. The presence of ZnO in rubber
enhances its strength, hardness, dynamic stability, capacity to absorb heat, and provides important
pigmenting properties.
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Figure 1. Stick and ball representation of ZnO crystal structures: (a) cubic rocksalt (B1), (b) cubic zinc
blende (B3), and (c) hexagonal wurtzite (B4). The shaded grey and black spheres denote Zn and O
atoms, respectively. Reprinted from [97], with the permission of John Wiley & Sons, Inc. Copyright
2009. All rights reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 2. Schematic representation of a wurtzitic ZnO structure with lattice constants a in the basal plane
and c in the basal direction, u parameter, which is expressed as the bond length or the nearest-neighbour
distance b divided by c (0.375 in an ideal crystal), a and b (109.47 in an ideal crystal) bond angles,
and three types of second-nearest-neighbour distances b′1, b′2, and b′3. Reprinted from [97], with the
permission of John Wiley & Sons, Inc. Copyright 2009. All rights reserved. In order to re-use permission
must be obtained from the rightsholder.

Table 1. Physical properties of ZnO with the wurtzite structure. Data were derived from literature [98–107].

Properties Value

Molecular formula ZnO

State (colour, form) white powder

CAS Reg No. 314-13-2

Molar mass 81.39 g/mol

Density at room temperature 5.606 g/cm3 (crystal theoretical density 5.61 g/cm3)

Solubility in water (25 ◦C) 1.6 mg/L
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Table 1. Cont.

Properties Value

Melting point 1975 ◦C

Boiling point 2360 ◦C

Stable phase at room temperature wurtzite

Structure Hexagonal, where a0 = b0 , c0

Space group symmetries C4 6v (P63mc)

Bulk effective piezoelectric constant 9.9 pm/V

Hardness 5.0 ± 0.1 GPa

Lattice parameters at 300 K
a0 3.2495 Å
c0 5.2069 Å

c0/a0 1.602 (ideal hexagonal structure shows 1.633)
U 0.345

Thermal conductivity 0.6, 1–1.2 W·cm−1
·K−1

Specific heat 0.125 cal/gm·◦C

Linear expansion coefficient a0: 6.5 cm 3 × 10−6 K
c0: 3.0 cm 3 × 10−6 K

Static dielectric constant 8.656 ε(0), ε(∞)

Thermoelectric constant at 573 K 1200 mV/K

Refractive index 2.008–2.029

Band gap at RT: 3.370 eV

at 4 K: 3.437 eV

Exciton binding energy 60 meV

Intrinsic carrier concentration <106 cm3

Electron effective mass 0.24 m0

Hole effective mass 0.59 m0

Electron Hall mobility at 300 K 200 cm2/V·s

Hole Hall mobility at 300 K 5–50 cm2/V·s

Ionicity 62%

1.3. Nano ZnO: Properties and Application

Due to its unique properties ZnO enjoys unfading popularity among research units worldwide
(Figure 3). Increasingly often, researchers focus on ZnO in the nano-form, which is proven by the
search results in the ScienceDirect scientific paper search engine (Figure 3). The number of hits was
as follows: “zinc oxide”—264,763 hits, and “nano zinc oxide”—38,999 hits. The overall share of
publications concerning “nano zinc oxide” among all the hitherto published papers about ZnO was
≈14.7%. The number of publications concerning nano ZnO have been growing dynamically year by
year (Figure 4), while the annual share of publications concerning nano ZnO in 2020 was as high as
32.6% (Figure 4). Over the past 10 years, the number of scientific publications related to nano ZnO
increased by ca. 400% (Figure 3). The growing popularity of nano ZnO results among others from the
technological development of production of ZnO nanostructures, which are characterised by novel
physical properties allowing hitherto unknown applications and possibilities [71,108–110].

The main limitation related to the synthesis and application of various types of nanopowders,
obviously including nano ZnO, is the problem of repeatability of parameters of nanopowders. Most “wet
methods” [73,76,86,111] used for producing metal oxide nanoparticles lead to obtaining powders with
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a broad particle size distribution, insufficient crystallinity degree, variable morphology and insufficient
purity. This causes a range of problems with respect to their application in the broadly understood
industry, where properties of raw materials are the crucial and decisive parameter for their choice
and guarantee the performance characteristics of the product being manufactured. Research on ZnO
nanomaterials (ZnO NMs) can be intensified in line with the development of new methods of production
and control. The evolution of nanoparticle characterisation techniques [112] and the standardisation of
nanotechnology [113] currently permit determining whether changes to the ZnO NMs properties are,
e.g., caused by unrepeatability of methods of obtaining, actual changes to NMs features (among others,
material ageing, etc.) or unrepeatability of research procedures. An important role in research on ZnO
NMs is played by a network of Accredited Research Laboratories, where increasingly more accurate
and appropriately validated measurement techniques are introduced. The large number of published
scientific papers devoted to the issues of nano ZnO prove that the topic of synthesis, properties,
and application of such powders is researched intensively. This indicates an enormous development
potential of nano ZnO, which was noticed and appreciated by numerous research groups worldwide.
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April 2020).

Nano ZnO is regarded as a safe material [114], which excellently fulfils the function of an ultraviolet
(UV) radiation filter, because it permits creation of protective layers which are invisible to the human
eye. Other advantages of the use of ZnO nanoparticles (NPs) as a UV filter in the area of personal
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hygiene and sun protection are, among others, long-term protection and broadband protection (UV-A
(315–380 nm) and UV-B (280–315 nm)) [115]. The impact of contact between ZnO NPs and human skin
is still being monitored and tested [116–121]. ZnO NPs are also applied in deodorants, medical and
sanitary materials, glass, ceramic, as well as self-cleaning materials [115,122]. In optoelectronics, various
ZnO nanostructures are used for producing e.g., refractive index sensors [123], surface-enhanced Raman
scattering (SERS) sensors [124], lasers, UV detectors, and UV diodes [74,125–128]. ZnO nanostructures
may serve for producing sensors of gases [129–152] such as steam (humidity, H2O) [133], ammonia
(NH3) [129–131,143], nitrogen (N2) [131], nitrogen monoxide (NO) [129,130,139], nitrogen dioxide
(NO2) [129,131,134–136,151,152], hydrogen (H2) [129–132,149], ozone (O3) [131,137], hydrogen sulfide
(H2S) [129–131,138,139], carbon monoxide (CO) [129–131,135,152], carbon dioxide (CO2) [140], methane
(CH4) [141], acetylene (C2H2) [131], ethylene (C2H4) [147], ethane (C2H6) [129], 1,2-dichloroethane
(C2H4Cl2) [129], p-xylene (C8H10) [129], phenol (C6H5OH) [130], chlorobenzene (C6H5Cl) [130],
methanol (CH3OH) [131], ethanol (C2H5OH) [129–131,148,150], formaldehyde (HCHO) [129–131,151],
acetaldehyde (CH3CHO) [131], acetone ((CH3)2CO) [129–131,144–146], mixture of propane (C3H8) and
butane (C4H10) [130,142], and triethylamine (C6H15N) [129]. The application of ZnO nanostructures in
the commercial development of new gas sensors is quite strongly limited for the time being, which is
a consequence above all of the ageing effect [153]. Thin films of nano ZnO are most often used
as inorganic conductors in flexible and transparent devices [154,155], e.g., transparent electrodes,
transparent windows, flat panel displays, and components of devices with the surface acoustic
wave [156–161].

The antibacterial and antifungal properties of ZnO NPs have become the focus of interest of
pharmacy, biomedicine and dentistry due to their low toxicity to the human organism [162–181].
It has been proved that ZnO NPs applied in textiles effectively fight bacteria, e.g., Staphylococcus
aureus or Klebsiella pneumoniae [182]. In medicine, research is in progress on the application
of ZnO NMs as a potential contrast agent (imaging), drug carrier, iron delivery, gene carrier,
biosensor, a potential anti-cancer agent, in a photodynamic therapy, for prophylactic and therapeutic
vaccines, support for antifungal treatments, in photocatalytic antibiotics, inhibition of influenza virus
infection, diagnostic-therapeutic functions, wound dressing and tissue engineering [70,166,168,183–213].
However, before implementing ZnO NMs in biomedical applications on a commercial scale,
the toxicity of ZnO NMs must be carefully learnt and their toxicity mechanisms must be
explained [121,162,171,174,178,179,214–219]. Once doped, they display new properties, e.g., electrical
conductivity, magnetic, magneto-optical, photocatalytic, antibacterial and optical [74,161,220–232].
At present, various ZnO nanostructures are being used in attempts to produce a new
generation of light-emitting diodes [233,234], lasers [235], field emission devices [236,237], memory
carriers [238,239], solar cells [240–246], liquid crystals [247], polymer nanocomposites [248–251],
food packaging materials [252–258], transparent ultraviolet light absorbers in unplasticised
polymers [259], catalysts [260], photoluminescent NPs [261], photocatalysts [262–273], hybrid
materials [272–274], chemical sensors [275,276], optical biosensors [277], nanofibrous materials [278,279],
piezoelectric nanogenerators [280,281], nano-piezotronics [282], supercapacitors [155], flexible and
transparent thin-film transistors [154,155], batteries [283,284], photoelectrochemical applications [285],
water treatment [286–291], water filters [292], solar water splitting [266,293–295], functional
coatings [296–305], and in crop cultivation [306,307]. ZnO nanostructures are investigated intensively
for the purpose of their application production of chemical and biological sensors [190,308,309].

In agriculture, research is in progress on the application of the antifungal properties of ZnO
NPs to protect crops [307,310]. ZnO NPs are used in a broad range of commercial applications,
thus it is important to understand their fate and behaviour in soil, water, their manner of absorption
and spreading/accumulation in plants, animals and microorganisms, but also interactions with
impurities [311–334]. It must be borne in mind that the dynamically increasing the commercial
application of ZnO NPs without appropriate supervision and tests may contribute to their adverse
impact on land and water plants and animals [335,336].



Nanomaterials 2020, 10, 1086 7 of 140

The properties of nanostructures depend strongly on their size and shape [40–50]. The size-
dependent effect of ZnO NPs has been observed on the: photocatalytic activity [337–342],
catalyst activity [343], dielectric properties [344], piezoelectric property [345,346], breakdown
voltage varistors [347], visible emission property of quantum dots displays [348], equilibrium
constant of chemical reactions [349], gas sensing properties [350–352], thermal diffusivity of water
nanofluid [353], photoluminescence [354], UV absorption [355,356], biomedical potential [357],
toxicity [312,328,357–362], bioavailability [363], and interactions with biomatrices [364]. A nano
ZnO material may be characterised by piezoelectric parameters of even a few times higher values than a
bulk ZnO material [365]. The photoluminescence, band gap width, conductivity, or magnetic properties,
in turn, may be controlled by doping ZnO NPs with transition metal ions (dopant quantity and type):
e.g., Co, Mn, Cr, Ni, Fe, V) [74,223–232]. It was found that the UV sensing performance of doped ZnO
improved in term of sensitivity and photoresponse properties compared to non-doped ZnO [366].
One of the goals of research concerning doped ZnO (diluted magnetic semiconductor—DMS) is to
enable a combination of communication, memory, and data processing in a single device. They will
serve for creating a new generation of smaller, faster and less energy-consuming devices than the
present ones, acting based on a combination of conventional micro-electronics and spin-dependent
effects [367,368].

In order that ZnO could be more willingly used in products on the industrial scale, the development
of ZnO NPs synthesis methods is necessary to enable simultaneous precise control of the average
particle size, obtaining narrow particle size distributions and their doping with transition ions. For the
purpose of achieving the required performance characteristics, e.g., in pharmaceutical applications,
it is also necessary that the material is homogeneous, fully crystalline, and characterised by high purity.

1.4. ZnO Market

It is estimated that the production of NPs of metal oxides in 2020 will be ca. 660 thousand tons,
with the estimated production of ZnO NPs alone being between 45 and 56 thousand tons, i.e., ca. 7–8%
of the market [115,122]. At present, ZnO NPs are used mainly for producing the following (Figure 5):

- pharmaceuticals,
- cosmetics,
- paints,
- various coatings,
- antibacterial products,
- electronics,
- and in scientific research.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 150 

 

[312,328,357–362], bioavailability [363], and interactions with biomatrices [364]. A nano ZnO material 

may be characterised by piezoelectric parameters of even a few times higher values than a bulk ZnO 

material [365]. The photoluminescence, band gap width, conductivity, or magnetic properties, in 

turn, may be controlled by doping ZnO NPs with transition metal ions (dopant quantity and type): 

e.g., Co, Mn, Cr, Ni, Fe, V) [74,223–232]. It was found that the UV sensing performance of doped ZnO 

improved in term of sensitivity and photoresponse properties compared to non-doped ZnO [366]. 

One of the goals of research concerning doped ZnO (diluted magnetic semiconductor—DMS) is to 

enable a combination of communication, memory, and data processing in a single device. They will 

serve for creating a new generation of smaller, faster and less energy-consuming devices than the 

present ones, acting based on a combination of conventional micro-electronics and spin-dependent 

effects [367,368]. 

In order that ZnO could be more willingly used in products on the industrial scale, the 

development of ZnO NPs synthesis methods is necessary to enable simultaneous precise control of 

the average particle size, obtaining narrow particle size distributions and their doping with transition 

ions. For the purpose of achieving the required performance characteristics, e.g., in pharmaceutical 

applications, it is also necessary that the material is homogeneous, fully crystalline, and characterised 

by high purity. 

1.4. ZnO Market 

It is estimated that the production of NPs of metal oxides in 2020 will be ca. 660 thousand tons, 

with the estimated production of ZnO NPs alone being between 45 and 56 thousand tons, i.e., ca. 7–

8% of the market [115,122]. At present, ZnO NPs are used mainly for producing the following (Figure 

5): 

 pharmaceuticals,  

 cosmetics,  

 paints,  

 various coatings,  

 antibacterial products,  

 electronics,  

 and in scientific research.  

 

Figure 5. Estimated demand for ZnO NPs on the market in terms of their applications. The chart was 

prepared based on data from [115]. 

1.5. Obtaining ZnO Nanomaterials 

The synthesis of ZnO NMs with repeatable properties is a quite difficult topic because some of 

the ZnO nanopowders available on the market are characterised by an insufficient degree of 

crystallinity, variable morphology, wide particle size distribution, presence of impurities and 

unrepeatability of properties. In addition, available ZnO nanopowders are mostly composed of a 

mixture of NPs agglomerates and aggregates, which can be confirmed by a test of average particle 

Figure 5. Estimated demand for ZnO NPs on the market in terms of their applications. The chart was
prepared based on data from [115].



Nanomaterials 2020, 10, 1086 8 of 140

1.5. Obtaining ZnO Nanomaterials

The synthesis of ZnO NMs with repeatable properties is a quite difficult topic because some of the
ZnO nanopowders available on the market are characterised by an insufficient degree of crystallinity,
variable morphology, wide particle size distribution, presence of impurities and unrepeatability of
properties. In addition, available ZnO nanopowders are mostly composed of a mixture of NPs
agglomerates and aggregates, which can be confirmed by a test of average particle size for a dry
powder using the laser diffraction method (ISO 13320:2020), while for suspension samples - using the
dynamic light scattering method (ISO 22412:2017) [369].

The literature provides numerous chemical, physical and biological methods of producing ZnO
nanostructures [73,76,86,154,169–174,270,307,370–390]. The following are most frequently enumerated
methods of obtaining ZnO NMs [76]: co-precipitation with subsequent calcination, sol-gel method
with subsequent calcination, mechanical synthesis combined with high-energy milling, hydrothermal
synthesis and solvothermal synthesis. The unrepeatability of ZnO NMs properties arises above all
from the limitations of the synthesis methods, unrepeatability of the reactants used and complexity of
chemical reactions. The main obstacle in obtaining NMs with intended physicochemical properties
is the lack of technologies that ensure the simultaneous control of, among others, average particle
size, particle size distribution, shape, phase purity, dopant content, and particle agglomeration and
aggregation. The synthesis of nanomaterials is currently at a new stage of development [391,392],
at which the main criterion of the approach to obtaining ZnO NMs is understanding the synthesis
mechanisms [393–402]. The familiarity with mechanisms of ZnO NMs synthesis allows obtaining
repeatable and reproducible ZnO nanostructures.

Nowadays, when the humans are fully aware of their harmful environmental impact [403,404]
and of the climate change on the planet [405], particular attention is drawn to technologies of
obtaining such nanomaterials that are environment friendly. One of the most interesting dynamically
developing “green technologies” of ZnO nanostructure syntheses is the “microwave assisted synthesis”,
which is proved, e.g., by the constant trend of the growing number of publications concerning
microwave synthesis of ZnO (Figure 6). At present, the number of scientific papers describing the
microwave synthesis of ZnO accounts for ca. 10.9% of the number of all hitherto published papers
describing the synthesis of ZnO, while the annual percentage share in 2020 was as high as ca. 16.0%.
It must be noted that microwave synthesis is also commonly and willingly employed for obtaining
different nanomaterials, e.g., gold (Au) [406,407], silver (Ag) [406–408], rhodium (Rh) [406,407], copper
(Cu) [406,407], hydroxyapatite (HAp) [409], zirconium dioxide (ZrO2) [410–412], titanium dioxide
(TiO2) [413], silicon oxide (SiO2) [414], cerium dioxide (CeO2) [415], tin oxides (SnO and SnO2) [416],
and nanocomposites (i.a. ZrO2-AlO(OH) [417,418], MoS2- polydopamine-Ag [419]).
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2. Microwave Heating

Microwaves constitute the part of the electromagnetic spectrum with the wavelength (λ) between
1 mm and 1 m (Figure 7), which corresponds to the frequency range between 300 MHz (λ = 1 m)
and 300 GHz (λ = 1 mm) [420,421]. Generally, microwaves are commonly used for commercial and
military purposes, namely in cellular, Internet, and satellite communications, in radar technologies
(radiolocation and radio navigation) and in the food industry (heating and drying). The International
Telecommunication Union (ITU) [422] introduced the official division of the microwave range by
frequency for the first time in 1953 [423,424]. ITU periodically organises World Radiocommunication
Conferences (WRC) [425], during which legal radio regulations, i.e., international agreements controlling
the use of the radio frequency spectra, are reviewed and corrected as necessary. In accordance with
international agreements, some frequencies were assigned for industrial, scientific and medical purposes
to avoid interferences in telecommunication. In each country, a dedicated governmental department
deals with the assignment of frequencies and the frequency range as well as the terms and conditions
of their use; in Poland, this role is fulfilled by the Ministry of Infrastructure [426]. The division of
frequencies for industrial and scientific purposes is presented, e.g., by Torgovnikov [427]. Given the
fact of the frequent use of microwave radiation in telecommunication, its individual frequencies were
assigned to specific fields, e.g., microwave ovens and equipment employed at a laboratory were
assigned the frequency of 2.45 GHz, which corresponds to the wavelength of ca. 12.25 cm.
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The interaction of the microwave radiation with a substance may be divided into three types
(Figure 8): absorption, transmission and reflection. Polar substances (e.g., solvents: H2O, ethylene
glycol) absorb microwave radiation, as a result of which they are heated. Non-polar substances
may display low interactions with microwave radiation, for which they are a microwave transparent
medium. The third type includes substances (electrical conductors, e.g., metals) which reflect the
microwave radiation from their surface.

https://creativecommons.org/licenses/by/4.0/
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Figure 8. Interaction of different substances with microwaves: absorbing materials (e.g., polar solvents),
insulation materials (e.g., PTFE, quartz, glass) and electrical conductors (e.g., metals).

The heating of substances by microwave radiation has already been thoroughly described in the
literature by numerous scholars [428–457]. Microwave heating (MH) is based on the transformation
of electromagnetic field energy stemming from microwave radiation into kinetic energy (heat) by
interacting with the polar particles of the material. MH arising from the electric component of
electromagnetic radiation may occur in four ways (Figures 9 and 10): by rotation of dipoles (dipolar
polarisation), ionic conduction (ionic polarisation), electronic polarisation (atomic polarisation),
and interfacial polarisation (surface polarisation).
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The first mechanism of MH consists of the rotation of dipoles having a dipole moment, which try
to position themselves in line with the direction and sense of the variable electromagnetic field,
which imposes their motion. During the rotation, the microwave radiation energy is converted into
kinetic energy, which is transferred between the particles that collide and rub against each other.
The result is a uniform spreading of heat in the heated material and a rapid increase in temperature.
The second mechanism of MH based on ionic conduction concerns systems (solutions, suspensions)
containing ions. Ions present in the microwave field move in line with the direction of the variable
electric field. The collision of migrating ions with those moving in the opposite direction causes a
heating effect, which is the stronger the higher the concentration and mobility of ions are. The third
mechanism of MH constitutes the induction of a dipole moment by shifting the centre of the electron
charge in relation to the nucleus. The fourth mechanism of MH is based on the polarisation of a
material in the microwave field by accumulation of charges on the interface surface (particle boundaries,
phase boundaries), i.e., partial charging of the surface (induced surface charges) through the action of
the microwave radiation.

The capability of a substance (solvent) in the conditions of being radiated with microwaves at a
given frequency and temperature of converting the microwave radiation energy is determined by the
so-called “loss factor” or “loss angle” or “loss tangent”, tanδ. Loss factor is expressed as tan δ = ε′′

ε′ ,
where ε′′ is the dielectric loss (F·m−1), which is indicative of the efficiency with which electromagnetic
radiation is converted into heat and ε′ is the dielectric constant (F·m−1), which is indicative of the
polarisability of molecules in the electric field [428]. The higher the tanδ value, the more efficient
the heating of a given substance by microwave radiation will be. The tanδ and ε values depend on
the electromagnetic radiation frequency and temperature. The tanδ values of popular pure solvents
are presented in Table 2. The heating capability (tanδ) of solvents also depends on the substances it
contains. The following classification of solvents was adopted depending on tanδ value:

- low microwave absorbing, where tanδ value <0.1
- medium microwave absorbing, where tanδ value ranges from 0.1 to 0.5
- high microwave absorbing, where tanδ value is higher than 0.5.

Table 2. tanδ values of different solvents at 2.45 GHz and 20 ◦C [428,458,459].

High (>0.5) Medium (0.1–0.5) Low (<1)

Solvent tanδ Solvent tanδ Solvent tanδ

Ethylene glycol 1.350 2-Butanol 0.447 Chloroform 0.091
Ethanol 0.941 Dichlorobenzene 0.280 Acetonitrile 0.062
DMSO 0.825 NMP 0.275 Ethyl acetate 0.059

2-Propanol 0.799 Acetic acid 0.174 Acetone 0.054
Formic acid 0.722 DMF 0.161 THF 0.047
Methanol 0.659 Dichloroethane 0.127 Dichloromethane 0.042

Nitrobenzene 0.589 Water 0.123 Toluene 0.040
1-Butanol 0.571 Chlorobenzene 0.101 Hexane 0.020

Generally, microwaves are capable of heating only such solvents with particles being dipoles, e.g.,
water (H2O), methanol (CH3OH), ethanol (C2H5OH), ethylene glycol (C2H4(OH)2), diethylene glycol
((C2H4OH)2O), dimethylformamide ((CH3)2NCHO), dimethylsulfoxide ((CH3)2SO), ethyl acetate
(CH3COOC2H5), chloroform (CHCl3), methyl chloride (CH2Cl2), acetic acid (CH3COOH), acetonitrile
(CH3CN), and acetone ((CH3)2CO). Liquid (and solid) substances which do not have particles with
the dipole moment and electric charge carriers do not absorb microwave radiation and do not
heat. Therefore, such solvents as hexane (C6H14), benzene (C6H6), toluene (C6H5CH3), diethyl ether
(C2H5)2O, tetrachloromethane (CCl4), tetrahydrofuran (C4H8O), or polytetrafluoroethylene (PTFE) oil
virtually do not heat under the influence of microwave radiation or heat insufficiently. Our experience
shows that even a small quantity of an impurity that has a dipole moment and is present in a non-polar
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solvent may contribute to a considerable improvement of the solvent heating under the influence of
microwave radiation.

It must be remembered that during the interaction of microwave radiation with unearthed metals,
electric charge carriers (electrons) move under the influence of the electric component of radiation,
which leads to metal polarisation. Therefore, unearthed metal subject to microwave radiation will heat
intensively and the charges generated on its surface will cause electric discharges and sparking.

2.1. Comparison of Conventional Heating with Microwave Heating

Conventional methods of obtaining nanomaterials employ direct resistance heating and indirect
resistance heating. In direct resistance heating, current flows directly through the feedstock itself,
causing its heating. This type of heating is not popular because it mostly requires a high current to
flow through the feedstock, which flows through the contacts connecting the power source with the
feedstock but this causes a range of complications. Indirect resistance heating uses a heat source, i.e.,
a heating element (e.g., an electric heater). There are two possibilities of applying the heating element:
at the direct contact with the feedstock (e.g., electric kettle) or at the indirect contact, where the heating
element is in contact with the vessel walls and with the feedstock (e.g., heating mantle or heating
jacket). The application of a heating element directly in the feedstock is not popular, which results
mainly from heavy contamination caused by corrosion of heater walls and from accumulation of solid
synthesis products on the heater surface. Heating jackets are used in the majority of conventional
chemical reactors. It must be borne in mind that during conventional heating the heating jacket first
heats the walls of a reaction chamber/vessel and subsequently the reaction feedstock, which is shown
in Figure 11.Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 150 
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Figure 11. Comparison of conventional heating with microwave heating on the example of heating a
water sample. Reprinted with permission from [460], Copyright©2018 Sweygers et al., Article licensed
under a CC BY 4.0, https://creativecommons.org/licenses/by/4.0/.

Conventional heating of the reactor feedstock involves the following disadvantages:

(a) long heating time, which depends on the thermal conduction of the material of which the reaction
chamber walls are made;

https://creativecommons.org/licenses/by/4.0/
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(b) temperature maximums occur on the reaction vessel/chamber wall surface, which is one of the
direct causes of the heterogeneity of the obtained products (so-called wall effect);

(c) limited reaction control caused by a high thermal inertia of the system, which results from the
heating of the heating jacket and the reaction chamber walls;

(d) difficulties involved in the speed of the feedstock cooling process;
(e) high heat losses.

MH is characterised by shorter heating times in relation to the conventional method. With optimum
parameters (MH power, resonance structure), feedstock may be heated rapidly and uniformly due to
the direct molecular heating by the energy of microwaves. MH is defined as endogenous or volumetric
heating [461], which means that heat may be generated within the whole precursor mass (sample inside)
rather than transferred from an external heat source (Figure 11). However, it must be borne in mind that
microwave radiation does not always have to heat the whole sample volume. When electromagnetic
radiation is cast on the surface of a given substance, a part of the radiation may reflect from the surface
while the remaining part may penetrate inside the (volume of the) substance. Electromagnetic radiation
which penetrated inside interacts with substance molecules and ions. Depending on the properties of a
given substance, electromagnetic radiation may penetrate a given substance at various depths, which is
illustrated in Figure 12. Penetration depth is the key parameter of each substance in the process of
microwave radiation heating. The penetration depth of a field is defined as the distance from the
surface to a certain internal point where the magnitude of field strength decreases to 1/e (=36.8%) of the
original magnitude at the surface [462]. This parameter is described by the following formula [437]:

dp =
λ0

2π

(
1

2µε0ε′

)1/2

[(1 + (tan δ)2)
1
2 − 1]

−1/2

where dp—penetration depth (cm), λ0—wavelength at vacuum conditions (cm), µ0—magnetic
permeability of free space (H·m−1), µ′—magnetic relative permeability (H·m−1), ε0—permittivity
in free space, (F·m−1), ε′—relative permeability (F·m−1), and tan δ—loss angle. If considering, e.g.,
water, the penetration depth of the electromagnetic radiation with the frequency of 2.45 GHz at
the temperature of 25 ◦C for deionised water is 2.88 cm, while for water with an addition of NaCl
(0.5 M)—merely 0.45 cm [456] (Table 3). When the size of the heated substance is greater than the
microwave penetration depth, only a part of the volume of this substance is heated, which is illustrated
in Figure 12.
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Table 3. Penetration depths of the 2.45 GHz microwaves for common solvents and materials.

Material Temperature (◦C) Penetration Depth (cm) Ref.

Water (distilled) 20 1.6 [463]
Water (distilled) 25 2.88 [456]
Water (distilled) 100 80 [463]

0.125 M NaCl solution of salt water 25 0.88 [464]
0.5 M NaCl solution of salt water 25 0.45 [456]
2 M NaCl solution of salt water 25 0.14 [464]

Water (ice) −12 1100 [465]
Ethylene glycol 25 0.46 [464]

Methanol 25 0.68 [464]
Ethanol 25 0.93 [464]

1-propanol 25 1.39 [464]
Acetone 25 7.07 [464]

Ethyl acetate 25 11.05 [464]
Xylene 25 28.32 [464]

Rubber, styrene-butadiene (SBR), vulc. - 19 [463]
Nitrile rubber, natural - 65 [463]

Aluminium oxide (Al2O3) ceram, for MW use - 3000 [463]
Polyethylene 25 4000 [463]
Polyethylene - 5907.1 [456]
Polystyrene - 7619.3 [456]

PTFE (Teflon® ) - 9000 [463]
Quartz, pure - 20,000 [463]

Silver - 0.33 × 10−4 [463]
Zinc, pure (Zn) - 1.24·× 10−4 [463]

Copper (Cu) - 1.3 × 10−4 [456]
Aluminium 100% (Al) - 0.86 × 10−4 [463]

Aluminium (Al) - 1.7 × 10−4 [456]
Nickel (Ni) - 2.7 × 10−4 [456]

Iron (Fe) - 3.2 × 10−4 [456]
Titanium, pure (Ti) - 3.3 × 10-4 [463]
Stainless steel (304) - 4.3 × 10−4 [463]

Reaction vessels of microwave reactors are mostly made of polytetrafluoroethylene (PTFE, one of
the trade names is Teflon® ), which is characterised by a low thermal conductivity (0.25 W/(m·K)) and
acts as a thermal insulator, thanks to which a low temperature gradient is maintained in the reaction
chamber [461,466,467]. Compared with conventional heating, MH has the following advantages:

(a) No direct contact of heat source with heated material (contactless method).
(b) Minimisation of the “wall effect” because the wall of the vessel (reaction chamber) is not

heated directly.
(c) Volumetric heating of the feedstock.
(d) Instantaneous and precise electronic control. Quick heating switching on and off, e.g., heating

process can be controlled with the accuracy of 1 s, namely after switching off the magnetron
power unit, the heat source supply is interrupted immediately.

(e) Rapid heating with preservation of low thermal gradients (rapid energy transfer) [468].
(f) Heating uniformity (which is translated into the quality of obtained products, e.g., homogeneity

and narrow size distribution of obtained nanomaterials [437–441,469,470]).
(g) Shorter duration of syntheses/processes. Microwave synthesis, depending on type of organic

compound obtaining, may be 5–2500 times quicker than in the case of the same syntheses carried
out by conventional thermal methods [429,433,471].

(h) Fewer side reactions [472,473].
(i) Selectivity and purity of generated products [432,474].
(j) Easy to conduct under solvent-free conditions [451].
(k) Very high power densities developed in the processing zone [452].
(l) Superior moisture levelling [452].
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(m) Energy saving [467].
(n) Higher production efficiency (faster throughputs) [452].
(o) Lower apparatus size (compact equipment) [452].
(p) Shorter time of apparatus start-up.
(q) A green chemistry approach [475–480].

2.2. Application of Microwave Heating, Chemical Microwave Apparatus

Microwave heating is used for various applications, among others:

(a) food processing (np. home cooking, pasteurisation, drying) [445–447];
(b) industrial application (np. drying, wood curing, rubber curing and vulcanisation, disinfection,

coal pre-treatment and processing, ceramic processing, polymer processing, polymeric composites,
ceramic composites, melting of glasses, melting of metallic materials, roasting of tea/coffee beans,
plant extraction processes) [442,447–451,481–483],

(c) waste treatment (np. medical waste, garbage, sludge) [447];
(d) medical applications (np. sterilisation, drying, diagnosis, novel methods for treating inoperable

tumours) [447,484];
(e) analytical chemistry (laboratory sample processing, ashing, digestion, extraction, moisture

analysis) [432,485];
(f) chemical reactions: organic and inorganic synthesis (microwave assisted synthesis of e.g.,

medications, polymers and nanomaterials) [406,407,429–444,447,455,475–480,486–495].

Recent years have seen a noticeable constant trend of growing popularity of microwave
technologies, which is proved e.g., by the increase in the number of publications that were published
in the period 2011–2020 (Figure 13). According to the scientific search engine ScienceDirect, 304,138
scientific publications have been released so far which contain a reference to the keyword “microwave”
(Figure 13).Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 150 
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The main reason for the increased interest in microwave technologies, which is visible particularly
in chemical laboratories, is the dynamic development of microwave apparatus, in particular chemical
reactors [428,461,496–501], and the decrease in apparatus prices. The use of microwave reactors
involves a range of advantages, which are already discussed in the previous Section 2.1 describing
the advantages of microwave heating. Control and measurement technologies have reached a very
high development level over the past 25 years. Very difficult to control at the beginning of the 21st
century, microwave devices are currently equipped with advanced control systems and their operation
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parameter repeatability matches older and well developed technologies. Microwave chemical reactors
of a new generation are characterised by a high repeatability of processes thanks to, among others,
the optimisation of reactor structure (batch or flow type) in terms of applied materials, shape and
size of the reaction chamber/vessel, recess structure (single synthesis or parallel synthesis), classes of
microwave applicators (monomode or multimode) and automation. The capability of monitoring of
the real course of reaction (temperature (T), pressure (P)) in microwave chemical reactors is crucial
for meeting the requirements of chemical product generation, e.g., in the pharmaceutical industry.
New reactor designs enable the rapid cooling of products, e.g., through adiabatic opening of the
reactor chamber, which enables freezing the course of reaction over just a few seconds after the finish
of the heating process [461,502]. Microwave reactors can always experience a failure, just like other
ones [503]. It must be emphasised that microwave ovens, which are often used for conducting chemical
reactions, are not professional equipment. Processes performed in microwave ovens are characterised
by unrepeatability, which is often related to:

- random setting of the reaction vessel,
- random geometry of the reaction vessel (shape and size),
- impossibility to monitor the course of the process (temperature (T), pressure (P)).

One of the main reasons why microwave chemical reactors are popular is their heating speed.
Figure 14 shows the kinetics of distilled water heating in an experimental reactor, MSS3, which was
designed and constructed at the Laboratory of Nanostructures, Institute of High Pressure Physics,
Polish Academy of Sciences (IHPP PAS). The MSS3 is a reactor intended exclusively for research
applications with a reaction vessel made of quartz, which is cooled continuously. The selection of the
appropriate microwave power (Figure 14) enables the precise control of kinetics of feedstock heating,
which, as was proven later, permits the application of unique features to the synthesised nanomaterials
(ZnO NPs) [502]. Differences between the dynamics of heating and cooling are perfectly visible in
the chart (Figure 14). It is easier to heat a material because energy is supplied by the power of the
microwave field, while cooling takes place through thermal conduction and this process is limited by
the thermal conduction of the applied materials. Table 4 presents times after which the water sample
reached the temperature of 100 ◦C and 140 ◦C depending on the applied microwave power.

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 150 

 

which the water sample reached the temperature of 100 °C and 140 °C depending on the applied 

microwave power.  

 

Figure 14. Kinetics of heating of 70 mL of distilled water, depending on the power emitted by the 

magnetron. Source: Experimental data achieved in the MSS3 reactor (IHPP PAS). 

Table 4. Summary of durations of microwave heating of a 70 mL distilled water sample. Source: 

Experimental data achieved in the MSS3 reactor (IHPP PAS). 

Microwave Power 
Heating Time after Which the Temperature Was Reached (s) 

100 °C 140 °C 

100 W 443  - 

200 W 139 353 

300 W 106 171 

400 W 61 112 

500 W 43 141 

600 W 37 61 

700 W 31 52 

800 W 27 45 

900 W 22 41 

1000 W 22 39 

3. Microwave Hydrothermal Synthesis of ZnO 

The hydrothermal synthesis was defined in the literature [504] as a process in a closed system, 

in which chemical reactions take place exclusively in a water solvent at increased temperatures, at a 

pressure that is higher than atmospheric pressure (P > 101,325 Pa). This definition is often modified 

by scholars, e.g., Byrappa and Yoshimura [505] proposed a definition of the “hydrothermal reaction” 

as any heterogeneous chemical reaction in the presence of a solvent (whether aqueous or non-

aqueous) above the room temperature and at a pressure greater than 1 atm in a closed system. For 

the purposes of this review, we assume that the “hydrothermal synthesis” is a process occurring in 

an aqueous environment (where mH2O > 50%), with the pressure equal to or higher than atmospheric 

pressure. In hydrothermal processes, reaction products are mainly oxides and salts due to the 

properties of water as a solvent. The results of the literature review concerning microwave 

hydrothermal synthesis of ZnO are divided into the following subgroups: 

Figure 14. Kinetics of heating of 70 mL of distilled water, depending on the power emitted by the
magnetron. Source: Experimental data achieved in the MSS3 reactor (IHPP PAS).



Nanomaterials 2020, 10, 1086 17 of 140

Table 4. Summary of durations of microwave heating of a 70 mL distilled water sample. Source:
Experimental data achieved in the MSS3 reactor (IHPP PAS).

Microwave Power
Heating Time after Which the Temperature Was Reached (s)

100 ◦C 140 ◦C

100 W 443 -

200 W 139 353

300 W 106 171

400 W 61 112

500 W 43 141

600 W 37 61

700 W 31 52

800 W 27 45

900 W 22 41

1000 W 22 39

3. Microwave Hydrothermal Synthesis of ZnO

The hydrothermal synthesis was defined in the literature [504] as a process in a closed system,
in which chemical reactions take place exclusively in a water solvent at increased temperatures, at a
pressure that is higher than atmospheric pressure (P > 101,325 Pa). This definition is often modified by
scholars, e.g., Byrappa and Yoshimura [505] proposed a definition of the “hydrothermal reaction” as
any heterogeneous chemical reaction in the presence of a solvent (whether aqueous or non-aqueous)
above the room temperature and at a pressure greater than 1 atm in a closed system. For the purposes
of this review, we assume that the “hydrothermal synthesis” is a process occurring in an aqueous
environment (where mH2O > 50%), with the pressure equal to or higher than atmospheric pressure.
In hydrothermal processes, reaction products are mainly oxides and salts due to the properties of water
as a solvent. The results of the literature review concerning microwave hydrothermal synthesis of ZnO
are divided into the following subgroups:

(1) Microwave hydrothermal synthesis of ZnO nanostructures without any additional heat treatment,
where the literature review results [506–639] are summarised in Table 5.

(2) Microwave hydrothermal synthesis of ZnO nanostructures with additional heat treatment,
where the literature review results [585,640–673] are summarised in Table 6.

(3) Microwave hydrothermal synthesis of ZnO nanocomposites or ZnO hybrid nanostructures without
any additional heat treatment, where the literature review results [674–723] are summarised
in Table 7.

(4) Microwave hydrothermal synthesis of ZnO nanocomposites or ZnO hybrid nanostructures with
additional heat treatment, where the literature review results [724–738] are summarised in Table 8.

3.1. Reactants

The most popular reactants of the “Zn2+” zinc cation precursor used for ZnO synthesis
according to the data derived from the literature review [506–738] (Tables 5–8) are Zn(NO3)2·6H2O,
Zn(CH3COO)2·2H2O, ZnCl2, ZnSO4·7H2O and ZnO (Figure 15), respectively. The popularity of these
reactants results from their low price and easy availability. Reactants being a source of “Zn2+” ions are
commonly produced at a large scale mostly by several producers in each developed country. It should be
emphasised that ZnCl2 is one of the problematic reactants, which arises from the possibility that during
the ZnO synthesis a stable by-product (impurity), called simonkolleite (Zn5(OH)8Cl2·H2O), is formed.
If Zn(NO3)2·6H2O is used as the reactant and if the temperature of the ZnO synthesis is too low (below
100 ◦C), one of the synthesis by-products (impurity) may be the salt Zn5(OH)8(NO3)2·2H2O [515].
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It must be borne in mind that ZnO obtained by the hydrothermal method, depending on the parameters
employed (T, P, pH), may contain impurities being hydroxides, oxide hydroxides or basic salts.
Depending on the quantity and size of crystallites of “impurities”, they are often invisible in the results
of the X-ray powder diffraction analysis (XRD) because they are below the method’s detection limit.
When discussing the results, it must be remembered that the XRD analysis is capable of indicating only
crystalline impurities of ZnO.
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Figure 15. Statistics concerning the use of reactants (Zn2+ salts) in the microwave hydrothermal
synthesis of ZnO. Source: [506–738].

The most popular reactants being hydroxide anion precursor chemicals “OH−” used for the ZnO
synthesis according to the data derived from the literature review [506–738] (Tables 5–8) (Figure 16)
are sodium hydroxide (NaOH), ammonia water (NH3·H2O, NH4(OH)), hexamethylenetetramine
(urotropin, HMTA, C6H12N4), potassium hydroxide (KOH), urea (CH4N2O, CO(NH2)2), hydrazine
(N2H4·H2O) as well as other amides and amines, e.g., 1-n-butyl-3-methyl imidazolium tetrafluoroborate
(C8H15BF4N2), N,N dimethylformamide (C3H7NO), pyridine (C5H5N), aniline (C6H5NH2), arginine
(C6H14N4O2), tris (hydroxymethyl) aminomethane (C4H11NO3), bis(triaminomethyl) carbonate
(C3H12N6O3), butyl-3-ethyl imidazolium tetrafluoroborate (C8H15BF4N2), dodecylamine (C12H27N),
and 1-hexyl-2-ethyl-3-methylimidazoliumtetrafluoroborate (C6H11BF4N2).

Nanomaterials 2020, 10, x FOR PEER REVIEW 19 of 150 

 

(C8H15BF4N2), dodecylamine (C12H27N), and 1-hexyl-2-ethyl-3-methylimidazoliumtetrafluoroborate 

(C6H11BF4N2). 

The chemical properties of amines are similar to those of ammonia. These are compounds with 

alkaline properties, which form salts with acids and produce an alkaline reaction in aqueous 

solutions. The alkalinity of amines depends on substituents by the nitrogen atom. Aliphatic amines 

are, as a rule, more alkaline than ammonia while the alkaline properties of aromatic amines are 

weaker than those of ammonia. Amides undergo a slow hydrolysis, which leads to the formation of 

OH- and the formation of an intermediate, Zn(OH)2. 

 

Figure 16. Statistics concerning the use of reactants (OH−) in the microwave hydrothermal synthesis 

of ZnO. Source: [506–738]. 

3.2. Surfactants 

Surfactants are commonly used in nanotechnology for passivation of surface, control of shape, 

and giving of photophysical properties [740]. Similar impact on properties of nanomaterials, apart 

from various types of surfactants (anionic, nonionic, cationic and amphoteric), is exerted also by 

surface active polymers, amines, amino acids, proteins, and carbohydrates. One of the primary 

purposes of the use of surfactants in obtaining nanoparticles is their strong contribution to obtaining 

dispersoids (emulsions, suspensions, colloids), in which they counteract the agglomeration of NPs 

[741–743]. Surfactants enable achieving a dispersion of NPs in non-polar solvents, e.g. in lubricating 

oils [744]. Surfactants are also used for controlling the shape of nanomaterials [740,745]. The shape 

control mechanism is related above all to the adsorption of the surfactant particles on various planes 

of crystalline nucleation centres of crystallites; these particles selectively promote the growth of these 

centres or to the contrary: inhibit their growth. The following surfactants were used in microwave 

hydrothermal syntheses of ZnO NMs for the purpose of controlling the morphology:  

 Ethylenediamine (EDA, C2H8N2) for obtaining nanoneedles [525]. 

 Hexamethylenetetramine (HMT, (C6H12N4) for obtaining nanorods [525]. 

 Triethyl citrate (C12H20O7) for obtaining hexagonal disks [525]. 

 Triethanolamine (TEA, C6H15NO3) for obtaining nanosheets [521], pompon-like spheres [554], 

peach nut-like spheres [554], misshapen spheres [554], rugby-like nanostructures [565], 

raspberry-like nanostructures [566], hollow nanospheres [566], dumbbell-like [626], football-like 

shape [626], and spherical nanoparticles [565,566,625,645]. 

 1,2,4,5-benzenetetracarboxylic acid (BTCA, C6H2(CO2H)4) for obtaining nanosheet [554] and 

elongated triangles [554]. 

 Cetyltrimethylammonium bromide (CTAB, (C19H42BrN)) for obtaining heterogeneous shapes 

[531], wires [547], nanorods [576], wire-like architecture [597], flower-like microstructures 

composed of nanorods [597], and spike-like nanostructures [638]. 

Figure 16. Statistics concerning the use of reactants (OH−) in the microwave hydrothermal synthesis of
ZnO. Source: [506–738].

The chemical properties of amines are similar to those of ammonia. These are compounds with
alkaline properties, which form salts with acids and produce an alkaline reaction in aqueous solutions.
The alkalinity of amines depends on substituents by the nitrogen atom. Aliphatic amines are, as a rule,
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more alkaline than ammonia while the alkaline properties of aromatic amines are weaker than those of
ammonia. Amides undergo a slow hydrolysis, which leads to the formation of OH− and the formation
of an intermediate, Zn(OH)2.

3.2. Surfactants

Surfactants are commonly used in nanotechnology for passivation of surface, control of shape,
and giving of photophysical properties [740]. Similar impact on properties of nanomaterials, apart from
various types of surfactants (anionic, nonionic, cationic and amphoteric), is exerted also by surface
active polymers, amines, amino acids, proteins, and carbohydrates. One of the primary purposes of
the use of surfactants in obtaining nanoparticles is their strong contribution to obtaining dispersoids
(emulsions, suspensions, colloids), in which they counteract the agglomeration of NPs [741–743].
Surfactants enable achieving a dispersion of NPs in non-polar solvents, e.g., in lubricating oils [744].
Surfactants are also used for controlling the shape of nanomaterials [740,745]. The shape control
mechanism is related above all to the adsorption of the surfactant particles on various planes of
crystalline nucleation centres of crystallites; these particles selectively promote the growth of these
centres or to the contrary: inhibit their growth. The following surfactants were used in microwave
hydrothermal syntheses of ZnO NMs for the purpose of controlling the morphology:

- Ethylenediamine (EDA, C2H8N2) for obtaining nanoneedles [525].
- Hexamethylenetetramine (HMT, (C6H12N4)) for obtaining nanorods [525].
- Triethyl citrate (C12H20O7) for obtaining hexagonal disks [525].
- Triethanolamine (TEA, C6H15NO3) for obtaining nanosheets [521], pompon-like spheres [554],

peach nut-like spheres [554], misshapen spheres [554], rugby-like nanostructures [565],
raspberry-like nanostructures [566], hollow nanospheres [566], dumbbell-like [626], football-like
shape [626], and spherical nanoparticles [565,566,625,645].

- 1,2,4,5-benzenetetracarboxylic acid (BTCA, C6H2(CO2H)4) for obtaining nanosheet [554] and
elongated triangles [554].

- Cetyltrimethylammonium bromide (CTAB, (C19H42BrN)) for obtaining heterogeneous
shapes [531], wires [547], nanorods [576], wire-like architecture [597], flower-like microstructures
composed of nanorods [597], and spike-like nanostructures [638].

- Sodium di-2-ethylhexyl-sulfosuccinate (C20H36Na2O7S) for obtaining hexagonal rods [581],
hexagonal prismatic [581], bihexagonal rod-like structures [581], wire-like architecture [597],
and flower-like microstructures composed of nanorods [597] and rods [597].

- Pluronic F127 (polyoxypropylene polyoxyethylene block copolymer) for obtaining heterogeneous
shapes [531].

- Polyethylene glycol 400 (PEG400, C2nH4n+2On+1) for obtaining nanorods [533], flowers [533],
rod-like nanostructures [574], star-like nanostructures [574], particles with an irregular shape
(plate and rod-like particles) [596], quasi-spherical shapes [620], flower-like structures [620],
flower-like hierarchical structures [655], rod-like structures [673], and needle-like structures [673].

- Acetyl acetate (ACAC, (CH3CO)2O) for obtaining rod-like structures [644].
- Guanidinium carbonate ((CH5N3)2·H2CO3) for obtaining spherical nanoparticles [644] and

flower-like ZnO [644].
- Polyvinyl alcohol 2000 (PVA2000, (C2H4O)n) for obtaining spherical nanoparticles [578].
- Polyvinyl Pyrrolidine (PVP, (C6H9NO)n) for obtaining star-like nanostructures [526,558].
- Triethyl citrate (C12H20O7) for obtaining disk- and nut-like structures [525].
- Tripotassium citrate for obtaining UFOs and balls-like structures [525].
- Arginine (C6H14N4O2) for obtaining rods and flowers [543].
- Albumen for obtaining whisker-like and rod-like nanostructures [585].
- Triton X-100 (C14H22O(C2H4O)n (n = 9–10)) for obtaining rods (400–800 nm) and flower

structures [594].
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3.3. Morphology

The morphologies of ZnO NMs reported in the literature are presented in Tables 5–8 [506–738]
along with a description of their properties. ZnO NMs synthesised with the use of
microwave hydrothermal synthesis were characterised by the following shapes: belts-like [671],
bundle-like [655], brush-like [572], calthrop-like framework [561], candles [525], dandelion-like [518,612],
disks [525], dumbbell-like [626,641], football-like structure [626], hexagonal column [521,629],
hexagonal nanoring [521], hexagonal bi-pyramidal [626], hexagonal prisms [513,694] hexagonally shaped
prismatic [528], hexagonal tubular [664], hollow structures [521], javelins [540], lamellar-like [692,699],
misshapen spheres [554], peach nut-like spheres [554], petals [644], nuts-like [525], pompon-like
spheres [554], raspberry-like nanostructures [566], rhombic [663], rugby-like nanostructures [565],
spindles [518], sponge-like [580], spike-like [638], thruster vanes [518], tetrapod-like [631,670],
tubes [514,515,571], whiskers [585], wires [518,523,534,539,547,646,711], flakes [520,586,587,592,622,
648,663,664], plates [511,532,572,579,596,629,651,658,694,736], star-like [506,526,535,536,558,574,631,679,
703], heterogeneous structures [507,524,528,531,630,637,665,666,668,672,720,730,731], flower-like [508,510,
512,513,519,520,527–530,532,533,535,538,541,543,545,550,553,555–566,571,572,579,582,593,594,597–599,620–
622,631,639,649,654,655,663,670,704,734,737,738], needle-like [510,521,525,551,556,588,588,629,655,663,673,
716,729], sheets [521,544,551,552,575,577,583,585,588,627,650,686,707,714], spherical particles [511,535,536,
551,560,565,566,578,585,599,614,615,623,625,628,634–636,638,639,645,648,649,674,680–685,702,706,712,718,
721,727,735], and rods [473,509,511,517–519,525,527,529,533,538,541–543,548,549,553,556,557,559,562,563,
567,568,570,573,574,576,581,583–585,589–597,599–613,616–619,624,629,631–633,640,642–644,649,653,655,
658,659,661,663,664,670,673,678,693,696,697,700,701,705,709,710,723,725,726,732].

Examples of various morphologies of ZnO are presented in Figures 17–20. The modification of
morphology of ZnO NMs with a 3D architecture is extremely important e.g., for producing sensors
with high sensing capabilities [739]. The 3D architecture of ZnO NMs, characterised by a small particle
size, a high specific surface area and porosity, enables the improvement of the sensing response of gas
sensors [152].Nanomaterials 2020, 10, x FOR PEER REVIEW 21 of 150 
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Figure 17. Examples of various ZnO structures obtained by the microwave hydrothermal synthesis:
(a,b) Scanning electron microscopy (SEM) image and Transmission electron microscopy (TEM) image of
Fe doped ZnO nanostars, respectively (Reprinted with permission from [679], Copyright©2015 Kwong
et al., Article licensed under a CC BY 3.0, https://creativecommons.org/licenses/by/3.0/); (c,d) SEM images
of ZnO nanoplates grown on office papers (Reprinted with permission from [607], Copyright©2019
Matias et al. Article licensed under a CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); (e–g) SEM
images of ZnO microstructures Reprinted with permission from [583], Copyright©2013 Majithia et al.
licensed under CC BY-NC-SA 3.0, https://creativecommons.org/licenses/by-nc-sa/3.0/); (h) SEM images
of ZnO nanorods grown on a glass substrate (Reprinted with permission from [659], Copyright©2016
Al-Sabahi et al., Article licensed under a CC BY 4.0, https://creativecommons.org/licenses/by/4.0/);
(i,j) SEM image of ZnO nanorod arrays and SEM cross section image of ZnO nanorod arrays (Reprinted
with permission from [617], Copyright ©2016 Pimentel, Article licensed under a CC BY 4.0, https:
//creativecommons.org/licenses/by/4.0).
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Figure 18. Examples of various ZnO structures obtained by the microwave hydrothermal synthesis:
(a) SEM image of ZnO hexagonal columns; (b) SEM image of ZnO cauliflower-like morphology.
((a,b) Reprinted from [598], Copyright ©2015 The Authors, with permission from Elsevier [OR
APPLICABLE SOCIETY COPYRIGHT OWNER]. Article licensed under a CC BY-NC-ND 4.0,
https://creativecommons.org/licenses/by-nc-nd/4.0/); (c–e) SEM images of ZnO rods (Reprinted
from [599], Copyright©2015 The Authors, with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER]. Article licensed under a CC BY-NC-ND 4.0, https://creativecommons.org/

licenses/by-nc-nd/4.0/); (f,g) SEM images of ZnO micro-javelin(s) (Republished with permission of
Royal Society of Chemistry, from [540]; permission conveyed through Copyright Clearance Center, Inc.
All rights reserved. In order to re-use permission must be obtained from the rightsholder.; (h) SEM
image of hollow particles (Reprinted with permission from [672], Copyright©The Royal Society of
Chemistry, Article licensed under a CC BY-NC 3.0, https://creativecommons.org/licenses/by-nc/3.0/).Nanomaterials 2020, 10, x FOR PEER REVIEW 22 of 150 
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Figure 19. Examples of various ZnO structures obtained by the microwave hydrothermal synthesis:
(a,b) SEM and TEM images of N-ZnO microflowers (Reprinted with permission from [615], Copyright
©2016 Ou et al., Article licensed under a CC BY 4.0, http://creativecommons.org/licenses/by/4.0/); (c) SEM
image of ZnO bihexagonal rod-like (Reprinted with permission from [581], Copyright©2013 Barreto
et al., Article licensed under a CC BY 3.0, https://creativecommons.org/licenses/by/3.0/); (d) TEM image
of Cd doped ZnO/CNT carbon nanotubes nanocomposites (Reprinted from [698], Copyright 2017 The
Authors, with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. Article
licensed under a CC BY-NC-ND 4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/.); (e–h) SEM
images of ZnO nanoplates and SEM images of nanostructure flowers, respectively (Reprinted with
permission from [532],©2019 The Ceramic Society of Japan, Article licensed under a CC BY-ND 4.0,
https://creativecommons.org/licenses/by-nd/4.0/deed.en).
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Figure 20. SEM (left) and TEM (right) images of the basic ZnO structures synthesised by the microwave
irradiation: (a,b) nanorods, (c,d) nanoneedles, (e,f) nanocandles, (g,h) nanodisks, (i,j) nanonuts,
(k,l) microstars, (m,n) microUFOs, (o,p) microballs. HRTEM images and SAED patterns were inserted
as upper and lower insets in TEM images, respectively. The HRTEM images were obtained at the centre
of the triangles or the hexagons in the TEM images. Reprinted (adapted) with permission from [525].
Copyright© 2008, American Chemical Society. All rights reserved. In order to re-use permission must
be obtained from the rightsholder.

3.4. Microwave Hydrothermal Synthesis of ZnO without Any Additional Heat Treatment

The microwave hydrothermal synthesis of ZnO NMs owes its widespread use and popularity
to water (H2O). This solvent is cheap, non-toxic and easy to dispose of. The main advantage of this
solvent is that it can be easily separated from the product by e.g., centrifuging, drying with the use of a
filter, in a vacuum dryer, or freeze-drying. Another advantage of water is that the majority of Zn2+ salts
are soluble in it (among others: Zn(NO3)2·6H2O, Zn(CH3COO)2·xH2O, ZnCl2·xH2O, ZnSO4·7H2O).

Considering dispersoids of the reaction mixture in the microwave hydrothermal synthesis of ZnO
NMs, it is possible to perform the synthesis in a solution or in a suspension. It must be underlined
that currently the synthesis of ZnO NMs has reached a new stage of development, where the
common requirement is to control of properties of the obtained ZnO NMs, their repeatability and
reproducibility. One of examples of papers which report, e.g., control of the ZnO shape is the publication
by Wang et al. [510]. They demonstrate an example of obtaining ZnO with different morphologies by
using an imidazolium salt 1-n-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM]BF4) (an ionic
liquid). The aqueous mixture of Zn(NO3)2·6H2O, NaOH and [BMIM]BF4 was used as the precursor
solution. They obtained a strongly alkaline pH of the solution, where Zn2+ existed mainly as
Zn(OH)4

2−. The mechanism of the ZnO synthesis reaction proposed by Wang et al. [510] is as follows
in Equations (1)–(4):

Zn(NO3)2
H2O
←−−→Zn2+ + 2NO3

− (1)

NaOH
H2O
←−−→Na+ + OH− (2)
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Zn2+ + 4OH−
H2O
←−−→Zn(OH)4

2− (3)

Zn(OH)4
2− MH
−−−→ZnO ↓ +H2O + 2OH− (4)

Wang et al. [510] controlled the change in the morphology from flower-like, to flower-like +

needle-like and to needle-like by changing such parameters as concentration of reactants, temperature
and synthesis duration.

Pulit-Prociak et al. [507] report the effect of process parameters on the size and shape of ZnO in
their paper. They used Zn(NO3)2·6H2O and NaOH for the synthesis. The mechanism of the ZnO
synthesis reaction proposed by Pulit-Prociak et al. [507] was as follows in Equations (5)–(8):

Zn(NO3)2·6H2O
H2O
←−−→Zn2+ + 2NO3

− (5)

NaOH
H2O
←−−→Na+ + OH− (6)

Zn2+ + 2OH−
H2O
−−−−→Zn(OH)2 ↓ (7)

Zn(OH)2
MH
−−−→ZnO ↓ +H2O (8)

Pulit-Prociak et al. [507] contributed to a change in the shape and size of aggregates of ZnO
particles by changing the microwave power, synthesis duration and pressure.

Hu et al. [509] report obtaining ZnO rods using a water suspension composed of Zn(NO3)2·6H2O
and (CH2)6N4 (hexamethylenetetramine, HMT) in their paper. The mechanism of the ZnO synthesis
reaction proposed by Hu et al. [509] was as follows in Equations (9)–(12):

C6H12N4 + 6H2O
H2O
←−−→4NH3 + 4HCHO (9)

NH3 + H2O
H2O
←−−→NH4

+ + OH− (10)

Zn2+ + 2OH−
H2O
−−−−→Zn(OH)2 ↓ (11)

Zn(OH)2 ↓
MH
−−−→ZnO ↓ +H2O (12)

Hu et al. [509] changed the morphology from flower-like, to flower-like + needle-like, to needle-like
by changing such parameters as concentration of reactants, temperature and synthesis duration.

Phuruangrat et al. [513] report the control of morphologies and a growth mechanism of hexagonal
prisms with planar and pyramid tips of ZnO microflowers. They used Zn(NO3)2·6H2O, NaOH,
and hexamethylenetetramine (HMT) for the synthesis. Figure 21 presents the as-synthesised products
which were pure hexagonal wurtzite ZnO microstructured flowers of hexagonal prisms with planar
tips at pH 9 and of hexagonal prisms with hexagonal pyramid tips at pH 13.
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Figure 21. SEM images of ZnO synthesised in solutions containing Zn(NO3)2·6H2O and
hexamethylenetetramine (HMT) at pH (a–c) 9 and (d–f) 13. Reprinted from [513], Copyright (2014),
with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved.
In order to re-use permission must be obtained from the rightsholder.

Phuruangrat et al. [513] explained the formation of ZnO microflowers composed of petals in the
shapes of hexagonal prisms with planar and pyramid as follows: the size and morphology of particles
is controlled by the chemical state of Zn2+ ions in the solution. Thermodynamic and kinetic factors
affect the process of precipitation of compounds containing Zn2+ in various ways. The chemical state
of Zn2+ ions (dissociated form, dissociated complex form, sediment) strongly depends on the pH of
the medium and may be strongly controlled by the pH of the solution and anionic type. By adding
the NaOH solution gradually to the Zn(II) salt solution with the pH of 13, the Zn(OH)4

2− complex is
formed, which can be denoted by in Equations (13)–(16):

Zn(NO3)2·6H2O
H2O
←−−→Zn2+ + 2NO3

− (13)

NaOH
H2O
←−−→Na+ + OH− (14)

Zn2+ + 4OH−
H2O
←−−→Zn(OH)4

2− (15)

Zn(OH)4
2− MH
−−−→ZnO↓+ H2O + 2OH− (16)

Due to a large number of growth units, [Zn(OH)4]2− complexes are able to easily adsorb on
different sites of ZnO nanorods. The positively charged Zn-(0001) surfaces are the most reactive.
Thus OH− ions may stabilise the positive charge of the Zn-(0001) surfaces to some extent, allowing
rapid growth along the [1] direction zone axis of the hexagonal phase, leading to the formation of ZnO
hexagonal prisms with rod-like crystal. ZnO microflowers of hexagonal pyramid tips were obtained at
a higher concentration of NaOH, where the pH of the solution was 13. It must be emphasised that
higher concentrations of OH− result in an increase in the solubility of Zn(OH)2 and ZnO at the room
temperature, which is related to the formation of an ionic complex, above all Zn(OH)4

2−. The solubility
of Zn2+ complexes decreases in line with the increase in temperature during the microwave synthesis,
which results in the precipitation of solid ZnO. The growth mechanism of ZnO microflowers with
the petals of hexagonal pyramids may be explained as follows: when the pH value of the solution is



Nanomaterials 2020, 10, 1086 25 of 140

high, a strong electrostatic interaction emerges between ions and polar surfaces, which leads to an
increase in surface energies of polar surfaces (0001) and (1011) in comparison with the energy of the
other surfaces of the hexagonal crystal. The growth rate of these polar surfaces decelerates and the
polar surfaces appear as external surfaces with sharp edges. When the pH value is high, a strong
electrostatic interaction emerges between ions and polar surfaces, which leads to an increase in surface
energies of polar surfaces (0001) and (1011) in comparison with the energy of the other crystalline
surfaces. The growth rate of these polar surfaces decelerates and the polar surfaces appear as external
surfaces with sharp tips of the hexagonal prisms with pyramid tips.

Klofac et al. [574] report obtaining ZnO rods using a water suspension composed of Zn
(CH3COO)2·2H2O, aqueous ammonia, polyethylene glycol (PEG; Mr = 400), and cetyltrimethylammonium
bromide (CTAB, C19H42BrN) in their paper. The mechanism of the ZnO synthesis reaction proposed
by Klofac et al. [574] was as follows in Equations (17)–(21):

NH3 + H2O
H2O
←−−→NH4

+ + OH− (17)

Zn2+ + 4OH−
H2O
←−−→[Zn(OH)4]

2− (18)

Zn2+ + 4NH3
H2O
←−−→[Zn(NH3)4]

2+ (19)

[Zn(OH)4]
2− H2O
−−−−→ZnO↓+ H2O + 2OH− (20)

[Zn(NH3)4]
2+ + 2OH− MH

−−−→ZnO ↓ +4NH3 + H2O (21)

Klofac et al. [574] obtained star- or flower-like ZnO particles aggregated from rod-like components
united at a common centre depending on the surfactant used.

Based on these papers, a general conclusion may be drawn that depending on pH and NH3

derivatives the key role in reactions is played by stages related to the formation of complex compounds
of zinc ions (Zn2+).

Details of other research papers concerning the microwave hydrothermal synthesis of ZnO without
any additional heat treatment are presented in Table 5.

Table 5. Summary of microwave hydrothermal synthesis of ZnO without any additional heat treatment.
SSA: specific surface area.

Substrates Conditions during
Preparation Properties Ref.

Zn(NO3)2·6H2O (0.1, 0.5 and 2 M),
NaOH, H2O

pH: 8–12; T: 100–190 ◦C; P:
1–13 bar, duration: 2 min–2 h;

microwave reactor

SSA: 4.7–18.1 m2/g; particles,
submicrometre grains and

star-like morphology
[506]

Zn(NO3)2·6H2O (0.1 M), NaOH (2 M),
H2O

P: 9–39 bar, duration:
3–7 min; power: 70–100%;
microwave reactor (750 W)

heterogeneous nano- and
microstructures; particles size:

10–300 nm
[507]

ZnCl2·2H2O (0.1 M), KOH or urea, H2O
pH: 12; P: 10–40 bar;
duration: 3–15 min;
microwave reactor

SSA: 8.6–102.2 m2/g; particles
size: 37–114 nm, flower-like

morphology
[508]

Zn(NO3)2·6H2O (0.005 M),
hexamethylenetetramine (C6H12N4)

(0.005 M), H2O

T: 90 ◦C; duration: 2 min;
microwave reactor

ZnO rods (e.g., bipods, tripods,
tetrapods and multipods);

diameter: 160–220 nm; length:
1.25–1.3 µm

[509]
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Table 5. Cont.

Substrates Conditions during
Preparation Properties Ref.

Zn(NO3)2·6H2O (0.13 M), NaOH
(1.3 M), 1-n-butyl-3-methyl

imidazolium tetrafluoroborate, H2O

T: 90–125 ◦C; duration:
2–10 min; microwave reactor

morphology: flower-like +
needle-like, from 60 to 450 nm

and lengths up to several
micrometres

[510]

Zn(CH3COO)2·2H2O, N,N
dimethylformamide, H2O

duration: 23 min; power:
50%; microwave oven

spherical particles ~160 nm and
nanoplatelets and nanorods

~2 nm in diameter and ~80 nm
in length

[511]

ZnO was dissolved in NH4(OH) and
Zn2+ 0.08 M, H2O, NH4(OH) (0.5, 1, 5,

10 and 14.8 M) was obtained

T: 90–150 ◦C; P: 0.7–4.8 bar;
power: 1000 W;

microwave reactor
flower-like agglomeration [512]

Zn(NO3)2·6H2O (0.005 M),
hexamethylenetetramine (C6H12N4)

(0.010 M), NaOH (3 M)

pH: 9 and 13; T: 96 ◦C;
duration: 60 min;

flower-like ZnO microstructures
(2–3 µm) of hexagonal prisms

(length: 1–2 µm, diameter:
50–130 nm) with planar and

hexagonal pyramid tips (length:
1.5 µm, diameter: 300 nm)

[513]

Zn(NO3)2·6H2O (0.43 M), NaOH
(0.43 M), H2O, NaCl, wet mechanical

mixtures obtained

T: 75–135 ◦C; power: 650 W;
microwave oven SSA: 9–13 m2/g; microtubes [514]

Zn(NO3)2·6H2O (0.05 M), urea (0.05 M),
H2O

duration: 40 min; power:
180 W; microwave oven

nanotubes have regular
polyhedral shapes, hollow cores
with diameters of 100–200 nm,

lengths of 1–3 mm and wall
thicknesses of 10–40 nm.

[515]

Zn(NO3)2·6H2O (0.43 M), NaOH
(0.43 M), H2O

duration: 15 min; T: 75–170
◦C; power: 40–450 W; Teflon

cell in microwave oven;
pulsed mode

SSA: 9–19 m2/g, crystallite size:
30–45 nm

[516]

Zn(CH3COO)2·2H2O and hydrazine
(N2H4·H2O) in a molar ratio of 1:4 in

H2O

duration: 10 min; power:
150 W; microwave oven

nanorods; diameter about
25–75 nm and length in the

range of 500–1500 nm
[517]

Zn(NO3)2·6H2O, NaOH, H2O

duration: 20 min; T:
100–180 ◦C; power:

0–1000 W; microwave
reactor

nanorods; nanowires;
nanothruster vanes;

nanodandelions; nanospindles
[518]

Zn(NO3)2·6H2O (1.6 M), NaOH (3.2 M),
H2O

pH: 8.3; duration: 1–5 min;
microwave oven

nanorods (diameter:
100–200 nm) and flower

structures
[519]

Zn(NO3)2·6H2O, NaOH (different
concentrations), H2O

duration: 1 h; T: 110 ◦C;
microwave oven

submicron starshaped
structures, chrysanthemum

flower structures, nanoflakes
[520]

Zn(NO3)2·6H2O, pyridine (C5H5N),
aniline (C6H5NH2) and triethanolamine

(TEA, C6H15NO3) (different
concentrations), H2O

duration: 10 min; T: 90 ◦C;
microwave reactor

various morphologies: linear
linked needles, regularly

hexagonal cross section of a
needle, hollow structures,

hexagonal nanorings, hexagonal
columns, nanosheets

[521]

Zn(CH3COO)2·2H2O, NaOH, 1-ethyl-3-
methylimidazolium

bis(trifluoromethylsulfonyl)imid, H2O

duration: 2–7 min; T: power:
255 W; microwave oven

(850 W)

nanoparticles, length less than
100 nm [522]

Zn(NO3)2·6H2O (0.025 M);
hexamethylenetetramine (C6H12N4)

(0.025 M), H2O

duration: 1–30 min; T:
100–180 ◦C; power:

120–700 W; microwave oven
nanowires [523]
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Zn(NO3)2·6H2O, NaOH (5 M)
nasturtium officinale leaf extract, H2O

pH: 10; duration: 10 min;
microwave oven (1000 W)

heterogeneous aggregates
of NPs [524]

Zn(NO3)2·6H2O (0.025 M),
Zn(CH3COO)2·2H2O, NH4(OH)

(0.16 M), H2O, ethylenediamine (EDA,
C2H8N2), hexamethylenetetramine

(C6H12N4), triethyl citrate (C12H20O7),
tripotassium citrate monohydrate

(C6H5K3O7·H2O)

duration: 15 min; T: 90 ◦C;
microwave reactor

nanorods, nanoneedles,
nanocandles, nanodisks and

nanonuts
[525]

Zn(NO3)2·6H2O,
hexamethylenetetramine (HMTA),
polyvinylpyrrolidone (PVP), H2O

duration: 60 min; T: 100 ◦C;
power: 300 W;

microwave reactor

nanostars, average size:
≈625 nm, crystallite size
≈550 nm, SSA = 20.6 m2/g

[526]

Zn(CH3COO)2·2H2O (different
concentrations), NH4(OH), H2O

duration: 85 s; T: 90 ◦C;
power: 800 W;

microwave oven

flower-like shapes with diameter
of 3 to 5 µm, flowers with
rod-like nanostructures,

spherical particles in 2–4 µm
diameter; 2–3 µm structured
balls with occasional large

10 µm lumps

[527]

Zn(CH3COO)2·2H2O, NH4(OH)
(different concentrations), H2O

pH: 7.0–11.1; duration: 2 h;
T: 150 ◦C; microwave reactor

hexagonally shaped prismatic
(width ≈ 1 µm, length ≈ 5 µm);

flower-like structures formed by
a micron sized crystals;

heterogeneous particles (size
from ~50 nm to 300 nm)

[528]

Zn(CH3COO)2·2H2O, NaOH, (o- and
m- and p)-nitrobenzoic acid, H2O

duration: 10 min;
microwave reactor

flower-like products consist of
sword-like ZnO nanorods,

which were 60–100 nm in width
and several micrometres

in length.

[529]

ZnCl2·2H2O, NaOH, H2O,
bis(dodecyldimethyl ammonium

bromide) (C26H56BrN)

duration: 5–10 h; T:
100–140 ◦C; power:

300–400 W; microwave
reactor

flower-like with mean r
0.5–1.5 µm, sphere-like with

mean diameter of 0.5 µm
[530]

ZnCl2·2H2O, NaOH, H2O,
cetyltrimethylammonium bromide
(CTAB, C19H42BrN), Pluronic F127

duration: 5 min; power:
130 W; microwave oven

SSA: 15.5–24.8 m2/g, diameter:
58–93 nm, heterogeneous shape

[531]

Zn(CH3COO)2·2H2O, Na(OH)
(different concentrations), H2O

duration: 5 min; power:
450 W; microwave oven nanoplates flowers [532]

Zn(CH3COO)2·2H2O, NaOH, H2O,
polyethylene glycol, ethanol

duration: 30 min; T: 140 ◦C;
power: 700 W; microwave

reactor (multimode)
nanorods, flowers [533]

Zn(CH3COO)2·2H2O (0.5 M),
KOH (2 M), H2O

pH: 8; T: 120 and 140 ◦C;
duration: 8 min; microwave

oven (800 W)

multiwires with a flower-like
shape of 50–400 nm in width

and length
[534]

Zn(CH3COO)2·2H2O (0.1 M),
Zn(NO3)2·6H2O (0.1 M), NH4OH,

polyvinilpirrolidone, hydrazine hydrate
solution (N2H4 in H2O), H2O

pH: 7.5–8; duration:
5–10 min; microwave oven

(1000 W)

spherical nanoparticles,
stars, flowers [535]

Zn(NO3)2·6H2O, NaOH, gum arabic
(stabilising agent), NaOH, H2O

pH: 10; duration: 5 min;
power: 450 W

stars (diameter: 1020 nm),
spherical particles
(diameter: 240 nm)

[536]

Zn(NO3)2·6H2O, NaOH, gum arabic
(stabilising agent), NaOH, H2O

pH: 10; duration: 2–10 min;
power: 350 W

aggregates of NPs (20–40 nm),
size of aggregates: 150–200 nm [537]
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Zn(NO3)2·6H2O (0.1 M), NH4(OH),
hydrazine hydrate (N2H4·H2O), H2O

pH: 8; duration: 10 min;
microwave oven

flower morphology consists of
sharp nanorods which look

like petals
[538]

Zn(NO3)2·6H2O (0.005 M), KOH (4 M),
H2O

pH: 12; T: 120 ◦C; duration:
4 h; microwave oven

nanowires with diameter of
80 nm and lengths of up to

10 µm.
[539]

Zn(NO3)2·6H2O (0.01 M), urea (0.1 M),
H2O

T: 120 ◦C; duration:
10–24 min; power: 150 W;

microwave oven

javelins, length: 14–17 µm,
width: 0.9–1.4 µm [540]

Zn(CH3COO)2·2H2O, KOH duration: 20 min; power:
180 W; microwave oven

flowerlike structures composed
of hexagonal ZnO spear-shaped

nanorods with diameters and
lengths of 50 nm and 2–4 µm,

[541]

ZnCl2·2H2O (different concentrations),
NH4(OH), H2O

duration: 10–40 min; power:
10–50%; microwave oven

(800 W)
nanorods [542]

ZnCl2·2H2O, arginine (C6H14N4O2),
H2O

T: 120–180 ◦C; duration:
3–10 min; microwave reactor rods and flowers [543]

Zn(CH3COO)2·2H2O (different
concentrations), NaOH, H2O

pH: 12; T: 120–140 ◦C;
duration: 15–60 min; power:

0–100%; microwave oven
(900 W)

nanosheets [544]

Zn(CH3COO)2·2H2O, NH4(OH), H2O pH: 9; duration: 90 sec;
microwave oven (900 W)

narcissus-like nanostructures
with crystallite sizes of 10–15 nm

and average diameter of
1–2.5 µm

[545]

Zn(CH3COO)2·2H2O, NaHCO3, H2O duration: 15 min; power:
200 W; microwave oven amorphous material [546]

Zn(CH3COO)2·2H2O (0.0026 M), NaOH
(1 M), H2O, cetyltrimethylammonium

bromide (CTAB, C19H42BrN)

T: 130 ◦C; duration:
30–180 min; Teflon autoclave
in microwave oven (800 W)

nanowires and microwires of
about 50–400 nm in width and
several micrometres in length

[547]

Zn(NO3)2·6H2O (different
concentrations),

hexamethylenetetramine (C6H12N4),
H2O

duration: 2–3 min; power:
600–900 W; Teflon bottle in
microwave oven (1000 W)

nanorods diameters from 117 to
156 nm

[548,
549]

Zn(NO3)2·6H2O (different
concentrations), NaOH, H2O

pH: 7–13.1; duration: 20;
power: 180 W;

microwave oven

nanoparticles in clusters,
nanoplates in flower-like

clusters, and spear-shaped
particles in flower-like clusters

[550]

ZnCl2·2H2O (0.066 M), NaOH (1.75 M),
H2O

pH: 13.75; duration: 5 min;
power: 150–1000 W;

microwave oven (1000 W)

nanoparticles, nanoneedles,
nanosheets (leaf-like) [551]

Zn(CH3COO)2·2H2O (0.1 M), NaOH
(4 M), CH3(CH2)11OSO3Na (0.1 M),
C12H25C6H4SO3Na (0.025 M), H2O

T: 75–130 ◦C; duration:
1–5 h; power: 400 and 700 W;

microwave reactor

SSA: 33.1–419.7 m2/g; square
shaped sheets

[552]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4)

duration: 30–45 sec; power:
700 W, microwave oven

multiple linked rods such as
bipods, tripods (T- shaped),
tetrapods (+ and X-shaped),

tassel brush and flower shaped
and individual rods

[553]

Zn(CH3COO)2·2H2O (different
concentrations), triethanolamine (TEA,

C6H15NO3), H2O

T: 80–100 ◦C; duration:
10–30 min; microwave

reactor (1000 W)

pompon-like spheres, peach
nut-like spheres, misshapen

spheres
[554]
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Zn(CH3COO)2·2H2O, NaOH,
bis(triaminomethyl) carbonate

(C3H12N6O3), H2O

pH: 12; duration: 2 min;
power: 600 W; microwave

oven

flower-like structure (2 µm)
composed of petals with average

size of about 600–700 nm in
length, 300–400 nm in width,

and 50–70 nm in tip

[555]

Zn(NO3)2·6H2O, NaOH, H2O
duration: 15–50 min; power:

120–420 W; microwave
reactor (700 W)

nanostructures consisted of
flower-like, sword-like,

needle-like and rods-like
structures

[556]

Zn(CH3COO)2·2H2O (different
concentrations), NH4(OH), H2O

pH: 10.2; duration: 50–70 s;
microwave oven (800 W) rod-arrays film on glass [557]

Zn(NO3)2·6H2O, polyvinyl pyrrolidone,
NH4(OH), H2O

pH: 10.2; duration: 10 min;
microwave oven (1000 W) star-shaped nanostructures [558]

Zn(NO3)2·6H2O (0.06 M), NaOH
(0.06 M), polyethylene glycols

(PEG)-2000, H2O

T: 180 ◦C; duration: 10, 20,
30, 60 min; microwave

reactor
hierarchical structured nanorods [559]

ZnSO4·7H2O (0.1 M), NaOH (0.4 M) duration: 2 min;
microwave oven nanoparticles (10–15 nm) [560]

Zn(CH3COO)2·2H2O, NaOH,
1-butyl-3-ethyl imidazolium

tetrafluoroborate (C8H15BF4N2), H2O

T: 120–140 ◦C; duration:
5 min; microwave reactor

(800 W)
calthrop-like framework [561]

Zn(NO3)2·6H2O (0.03 M), NaOH (0.06
M), H2O, polyethylene glycol (PEG)

2000, H2O

T: 180 ◦C; duration: 30 min;
microwave reactor

rods with the diameter of
300 nm and length of 1 µm [562]

Zn(NO3)2·6H2O, Zn(C5H7O2)2·xH2O,
urea, C2H4(OH)2 (different

concentrations), H2O

T: 150 ◦C; duration:
1–30 min; microwave reactor

microrods with width of
200–300 nm and length of up to

4 µm
[563]

Zn(NO3)2·6H2O, dodecylamine
(C12H27N), H2O

T: 80–130 ◦C; duration:
1–50 min; power: 150 W;

microwave oven

hexagonal quasi-hourglasses
(tripods, tetrapods,

pentapods, multipods)
[564]

Zn(CH3COO)2·2H2O, triethanolamine
(TEA, C6H15NO3), NH4(OH), H2O

pH: 6-12; T: 80–160 ◦C;
duration: 10–60 min; power:
150 W; microwave reactor

spherical nanoparticles
60–90 nm, rugby-like

nanostructures with diameter of
450 nm and length of about

700 nm

[565]

Zn(CH3COO)2·2H2O, triethanolamine
(TEA, C6H15NO3, (different

concentrations), NaOH (different
concentrations), H2O

pH: 9.0–12; duration: 90 s;
power: 900 W;

microwave oven

nanospheres with the crystallite
size of 57 nm; raspberry-like

nanostructures with the
crystallite size of 62 nm; hollow
nanospheres with the crystallite
size of 78 nm; nanoparticles with

the crystallite size of 24 nm

[566]

Zn(NO3)2·6H2O (0.1 M), C6H12N4
(0.1 M)

T: 90 ◦C; duration: 2 h;
microwave oven

nanorods on the surface of GaN
80–170 nm, nanorods on the
surface of glass 40–100 nm

[567–
569]

Zn(NO3)2·6H2O, C6H12N4
duration: 5 h;

microwave oven

nanorods on the surface of glass,
average width of nanorod:

20–1000 nm, average length of
nanorod: 150–5000 nm

[570]

Zn(CH3COO)2·2H2O, KOH, T: 90 ◦C; duration:
10–30 min; microwave oven

micro-tube structure 200–400 nm
in diameter, flower-like structure

composed of spear-shaped
nanorods with diameters and
lengths of 70 nm and 1–5 µm,

[571]
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Zn(CH3COO)2·2H2O (different
concentrations), NaOH, C2H5OH

pH: 10; T: 100 ◦C duration:
45–60 min; power: 800 W;

microwave reactor

plates (SSA: 10.7 m2/g), rounded
plates (SSA: 9.18 m2/g),

brush-like (SSA: 9.5 m2/g),
flower-like (SSA: 8.5 m2/g)

[572]

Zn(CH3COO)2·2H2O, NH4(OH), H2O pH: 8; duration: 180 s;
microwave oven (900 W)

SSA: 22.9 m2/g; uniform
flower-like nanostructures

composed of petals attached in
the centre with lengths in the

range of 700–950 nm and a
width in the range of

130–230 nm; each single petal is
composed of nanoparticles with

lengths of 45–95 nm

[573]

Zn(CH3COO)2·2H2O, NH4(OH),
C25N3H30Cl, Polyethylene glycol (PEG)

400, C19H42BrN, H2O

duration: 10 min;
microwave reactor

rod-like nanostructures, star-like
nanostructures [574]

ZnSO4·7H2O, NaOH, H2O pH: 9; duration: 5–25 min;
microwave reactor sheet nanostructures [575]

Zn(NO3)2·6H2O (0.1 M), NH4(OH),
H2O, cetyltrimethylammonium
bromide (CTAB, C19H42BrN)

pH: 7; T: 150 ◦C; duration:
1 h; microwave reactor

nanorods, length: 1–2 µm and
width: 100–150 nm [576]

Zn(CH3COO)2·2H2O, NH4(OH), H2O duration: 8 min; power:
900 W; microwave oven

nanoparticles (15 nm) which
were self-assembled to form a

sheet-like structure
[577]

Zn(NO3)2·6H2O, NaOH, polyvinyl
alcohol, H2O

duration: 10 min; power:
700 W; microwave oven nanoparticles (40 nm) [578]

Zn(NO3)2·6H2O (0.005 M),
Zn(CH3COO)2·2H2O (0.005 M),

ZnSO4·7H2O (0.005 M), KOH (2 M),
H2O

pH: 12; T: 130 ◦C; duration:
1 h; microwave reactor

(800 W)
flower-like structures, plates [579]

ZnCl2·2H2O (0.5 M), urea, H2O duration: 5 min; power:
800 W microwave reactor sponge-like nanostructure [580]

Zn(CH3COO)2·2H2O, Zn(NO3)2·6H2O,
ZnCl2·2H2O, NaOH, KOH, NH4(OH),
sodium di-2-ethylhexyl-sulfosuccinate

(C20H36Na2O7S), H2O

T: 80–140 ◦C; duration:
5–20 min; power:

300–1200 W; microwave
reactor

hexagonal rods (3–4 µm long
and 1 µm wide), hexagonal

prismatic, bihexagonal rod-like
structure (6 µm long and 2 µm

wide), hexagonal prismatic
particles (60–80 nm in diameter

and length between 90 and
110 nm)

[581]

ZnCl2·2H2O, NH4(OH), H2O
T: 80–140 ◦C; duration:
20 min; power: 240 W;

microwave oven

flower-shaped ZnO
microcrystals (about 5 µm) [582]

Zn(NO3)2·6H2O,
hexamethylenetetramine

(C6H12N4), H2O

T: 170 ◦C; duration:
2–20 min; microwave reactor

irregular sheet-like structures
and rods, tripods [583]

Zn(NO3)2·6H2O,
hexamethylenetetramine

(C6H12N4), H2O

T: 90 ◦C; duration: 3 h;
microwave reactor nanorods on paper [584]

Zn(NO3)2·6H2O (0.1 M), NH4(OH),
albumen, H2O

pH: 8; duration: 5 min;
microwave oven

sheet-like and spherical-like
nanostructures (13–50 nm),

nanowhiskers and nanorods
(10–57 nm)

[585]
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Zn(NO3)2·6H2O (0.03 M),
hexamethylenetetramine (C6H12N4),

H2O

duration: 2–30 min; power:
10–100%; microwave oven

(1100 W)

nanostructured-films
(networked-nanoflakes

morphology)

[586,
587]

Zn(CH3COO)2·2H2O, NaOH, glutamic
tetrofluoroborate (different

concentrations), H2O

T: 80 ◦C; duration: 10 min;
power: 1000 W; microwave

reactor

clew-like hierarchical nanosheet
spheres, nanoneedle-like

structures
[588]

Zn(NO3)2·6H2O (different
concentrations),

hexamethylenetetramine (C6H12N4),
H2O

duration: 5–20 s; power:
180-1100 W; microwave oven

growth of nanorods, diameters:
50–80 nm

[589–
591]

Zn(NO3)2·6H2O (0.03 M),
hexamethylenetetramine (C6H12N4),

H2O

duration: 30 min; power:
110 W; modified microwave

oven (1100 W)

porous nanostructures grown on
Al-Si substrate (Al layer

thickness form 0 to 150 nm);
Al-free Si substrate: nanorods
were formed (length: 350 nm,

diameter: 50 nm); Al on Si
substrate: nanoflake (height
~380 nm ) with pores sizes

ranging from 50 nm to several
hundreds of nanometres.

[592]

Zn(NO3)2·6H2O (different
concentrations),

hexamethylenetetramine (C6H12N4,
different concentrations), H2O

T: 80 ◦C; duration: 10 min;
power: 30–50%; microwave

oven

ZnO nanoarray (rod-like
structures) on glass, size control

achieved by regulating the
parameters

[473]

Zn(NO3)2·6H2O (different
concentrations), NH4(OH), H2O

duration: 8 min; power:
800 W; microwave oven

flower-like and rod-like
structures [593]

Zn(CH3COO)2·2H2O (0.45 M), NaOH
(8 M), Triton X-100

duration: 1–6 min; power:
100–600 W; microwave oven

rods (400–800 nm), flower
structures [594]

Zn(CH3COO)2·2H2O, KOH, H2O duration: 3 min; power:
800 W; microwave oven

hexagonal nanorods (length
from ~1.5 µm to 3 µm and in

diameter from ~30 nm to 80 nm)
[595]

Zn-dust, HNO3, NaOH, polyethylene
glycol (PEG, MW 2000), H2O

duration: 10–20 min;
microwave oven

SSA: 14.4-21.8 m2/g; particles
with irregular shape (plate and

rod-like particles), crystallite
size: 34–42 nm

[596]

Zn(CH3COO)2·2H2O, NaOH,
cetyltrimethylammonium bromide

(CTAB, C19H42BrN, different
concentrations), H2O

T: 130◦; duration: 15–60 min;
microwave oven

wire-like architecture with a
width in the range of 60–80 nm,

flower-like microstructures
composed of nanorods, rod has

a width of 300–400 nm and a
length of 3–4 µm

[597]

Zn(CH3COO)2·2H2O, Zn(NO3)2·6H2O,
NaOH, NH4(OH), di-2-ethylhexyl

sodium sulfosuccinate (C20H36Na2O7S),
H2O

T: 80–140 ◦C; duration:
5–20 min; power:

300–1200 W; microwave
reactor

cauliflower-like structures,
hexagonal prismatic type

particles (200–300 nm)
[598]

Zn(CH3COO)2·2H2O, Zn(NO3)2·6H2O,
NH4(OH), hydrazine hydrate

(N2H4·H2O), H2O

pH: 11.5; duration:
10–25 min; power:

510–680 W; microwave oven
nanoparticles, nanorods, flowers [599]

Zn(CH3COO)2·2H2O, NaOH, H2O
T: 140 ◦C; duration: 45 min;
power: 400 W; microwave

reactor (1600 W)

nanorods, diameter ranging
from 60 to 80 nm with average

length of about 250 nm
[600]

Zn(CH3COO)2·2H2O (0.005 M), NaOH
(0.025 M), H2O

duration: 6 min; power:
400–600 W; microwave oven

mixture of nanorods and
nanoplates [601]

Zn(CH3COO)2·2H2O (0.18 M), NaOH
(different concentrations), H2O

pH: 7–9.5; T: 50 ◦C; duration:
3 min; microwave reactor

(600 W)

nanorods (width: 80–300 nm,
height: 150–1000 nm) grown on

Si, GaAs and GaN substrate
[602]
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Zn(CH3COO)2·2H2O (0.18 M), NaOH
(different concentrations), H2O

pH: 6.75–7.75; T: 50 ◦C;
duration: 2 min; microwave

reactor (600 W)

rods (width: 0.5–2.5, height:
1.5–2.2 µm) grown on GaN

substrate
[603]

Zn(CH3COO)2·2H2O, NH4(OH), H2O
pH: 10.1–10.9; T: 90 ◦C;

duration: 20 min; power:
100 W; microwave oven

nanorods grown on Si substrate [604]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4 ),

H2O

T: 90 ◦C; duration: 2 h
(switched on and off

automatically); microwave
oven

nanorods grown on Si substrate
(thickness: ~1 µm) [605]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4),

H2O

duration: 10–30 min; power:
120 W; microwave oven

rods, bipods (length: 0.46–1 µm,
width: 0.1–0.13 µm) [606]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4),

H2O, oxalic acid dihydrate
(C2H2O4·2H2O)

P: 20.68 bar; duration:
15 min; microwave reactor

(300 W)

nanorods or flower grown
on paper [607]

Zn(NO3)2·6H2O, hexamethylene
tetramine (C6H12N4), H2O

T: 80 ◦C; duration: 5–20 min;
power: 100–1600 W;

microwave reactor (1600 W)

nanorods grown on glass
substrate [608]

Zn(NO3)2·6H2O, hexamethylene
tetramine (C6H12N4, different

concentrations), H2O

duration: 10 min; power:
240 W; microwave oven

nanorods (diameter: 89–216 nm)
grown on glass substrate [609]

Zn(NO3)2·6H2O, NH4(OH), H2O
pH: 10.0–12.0; T: 90–120 ◦C;

duration: 1 h min;
microwave reactor

nanorods grown on glass
substrate, control of size of

diameter of rods within the size
range between circa 125 and

770 nm

[610]

Zn(CH3COO)2·2H2O (different
concentrations),

hexamethylenetetramine (C6H12N4),
H2O

T: 60–110 ◦C; duration:
5–40 min; microwave reactor

nanorods (diameter from ~30 to
~300 nm, length from ~60 nm to
~520 nm) grown on Si substrate

[611]

Zn(CH3COO)2·2H2O, NH4(OH),
NaOH, CH3COOH, H2O

pH: 9.8 or 10.8; duration: five
steps (each step included

30 s of irradiation and 10 s
off); microwave oven

dandelion-like nanostructures
(needles: 50–200 nm, height

~2 µm) or a flower-like
microstructures grown on

activated carbon cloth

[612]

Zn(CH3COO)2·2H2O, NH4(OH),
palmitic acid (CH3(CH2)14COOH), H2O

pH: 4–5; duration:
10–30 min; microwave oven rod shaped structures [613]

ZnSO4·7H2O, NH4(OH), H2O
pH: 10; duration: 2 min;

power: 600 W;
microwave oven

nanoparticles (~50 nm) [614]

Zn(NO3)2·6H2O, potassium sodium
citrate, NaOH, H2O

T: 90 ◦C; duration: 2 min;
power: 600 W; microwave

oven (650 W) with a
refluxing apparatus

sphere-like particles (~2.32 µm) [615]

tris(ethylenediamine)zinc nitrate
([Zn(en)3](NO3)2), NaOH, H2O

pH: 7–12; T: 180 ◦C; duration:
20 min; power: 400 W;

microwave reactor (1600 W)

nanorods, diameter: from 40 nm
(pH 12) to 600 nm (pH 7) [616]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4),

H2O

T: 100 ◦C; duration: 60 min;
power: 100 W; microwave

reactor

nanorods (180–350 nm) grown
on glass [617]
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Table 5. Cont.

Substrates Conditions during
Preparation Properties Ref.

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4),

polyethylenimine, NH4OH, H2O

T: power on and off in order
to control the solution
temperature; duration:

6–10 × (30–60 s “on” and
5 min “off”); microwave

oven (350 W)

nanorods (180–350 nm) grown
on glass [618]

Zn(CH3COO)2·2H2O, NH4(OH),
carbon fibre, H2O

duration: 3 × (30 s
irradiation and 30 s stop);
microwave oven (1120 W)

rods (diameter: 0.3–0.5 µm,
length: 1.0–1.5 µm) grown on

carbon fibre
[619]

Zn(NO3)2·6H2O, NaOH, NH4(OH),
polyethylene glycol (PEG, MW 400),

H2O

T: 100 ◦C, duration: 5 min;
microwave oven (800 W)

quasi-spherical shape and
dimensions of less than 5 µm,

flower-like structures (>5 µm),
[620]

Zn(NO3)2·6H2O, C6H12N4,
polyethylenimine, NH4(OH), H2O

duration: 5–15 min;
microwave oven (800 W)

nanoflowers and nanowalls
grown on P–Si [621]

Zn(CH3COO)2·2H2O, NaOH,
1-hexyl-2-ethyl-3-

methylimidazoliumtetrafluoroborate
(C6H11BF4N2), H2O

duration: 2–9 min; power:
30%; microwave oven

flakes-shaped particles,
flower-like shaped particles [622]

Zn(NO3)2·6H2O, NaOH, plant extract,
H2O

pH: 10; duration: 15 min;
microwave oven nanoparticles [623]

Zn(NO3)2·6H2O, (C6H12N4)2, H2O T: 70–130 ◦C; duration:
10 min; microwave reactor

nanorods on paper, length
120–480 nm, thickness 55–75 nm [624]

Zn(NO3)2·6H2O, triethanolamine (TEA,
C6H15NO3), H2O

duration: 10 min; power:
640 W; microwave oven nanoparticles [625]

Zn(CH3COO)2·2H2O, KOH,
triethanolamine (TEA, C6H15NO3),
1,2,4,5-benzenetetracarboxylic acid,

H2O

pH: 8–12; T: 150 ◦C;
duration: 30 min; power:

800 W; microwave reactor

dumbbell-like structures,
football-like structures,

hexagonal bi-pyramidal
structures, SSA: 7–24 m2/g;

size 50 nm–10 µm

[626]

Zn(CH3COO)2·2H2O, NaOH, H2O pH: 8–10; duration: 6 min;
microwave oven (700 W)

sheet-like structures and
uniform microstructures [627]

Zn(CH3COO)2·2H2O, Tris
(hydroxymethyl) aminomethane

(C4H11NO3), H2O

duration: 3 min; microwave
oven (300 W) spherical nanoparticles [628]

Zn(CH3COO)2·2H2O, KOH,
benzene-1,2-dicarboxylic acid,
benzene-1,3-dicarboxylic acid,

benzene-1,4-dicarboxylic acid, H2O

pH: 7–12; T: 150 ◦C;
duration: 30 min; power:

800 W; microwave reactor

rod-like structures, needle-like
structures, platelet-like

structures, hexagonal columnar
shape of the particles, rice-grain

shape structures

[629]

Zn(CH3COO)2·2H2O (0.1 M), NaOH
(0.1 M), {4-[(E)-2-(furan-2-yl)ethenyl]

pyridin-1-ium-1-yl} acetate (1 wt% and
3 wt%), CH3OH, H2O

duration: 20 min;
microwave oven

heterogeneous shape of
nanoparticles, size: 200–800 nm,

average crystallite size:
21–23 nm

[630]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4),

NH4(OH), H2O

pH, 6.8–13, duration:
10–15 min; pulsed

microwave heating in
microwave oven (850 W)

rod, flower, star, tetrapod [631]

Zn(NO3)2·6H2O (different
concentrations),

hexamethylenetetramine (C6H12N4),
H2O

T: 105 ◦C; duration:
10–30 min; microwave oven

(850 W)

growth of nanorods on P-type
silicon wafer, diameters: from
26–32 nm to 35–40 nm, lengths:

from 330 nm–607 nm

[632]
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Table 5. Cont.

Substrates Conditions during
Preparation Properties Ref.

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4),

H2O

duration: 20 min; power:
750 W; microwave oven

growth of nanorods on silicon
substrate, diameters ~80 nm,

lengths ~500 nm
[633]

Zn(NO3)2·6H2O, coffee powder extract,
H2O

duration: 5 min; power:
540 W; microwave oven

spherical nanoparticles
(80–120 nm) [634]

Zn(NO3)2·6H2O, tomato extract, H2O duration: 5 min; power:
180–540 W; microwave oven

spherical nanoparticles
(40–100 nm) [635]

Zn(NO3)2·6H2O, tea leaf extract, H2O duration: 7 min; power:
540 W; microwave oven spherical nanoparticles (26 nm) [636]

Zn(CH3COO)2·2H2O, Longan fruits
extract, H2O

duration: 1 min on & 1 min
off irradiation cycle
(1–30 cycles); power:

450–800 W; microwave oven

SSA: 35 m2/g, diameter:
10–100 nm, heterogeneous shape

[637]

Zn(CH3COO)2·2H2O (0.22 M),
carbinol, H2O

duration: 5–15 min; power:
900 W; microwave oven

spherical nanoparticles,
diameters: 30 nm–50 nm;

hexagonal facetted
nanostructures, average size:

400–450 nm

[638]

Zn(NO3)2·6H2O, NH4(OH) (28%), H2O
pH: 12; duration: 5–25 min;

power: 180–540 W;
microwave oven (1200 W)

spherical and flower-like
particles on paper;
non-uniform size

[639]

ZnO powder, hydrogen peroxide
(H2O2, 30%)

P: 30 bar; duration: 15 min;
power: 1200 W; microwave

oven (1200 W)

rod-like nanostructures, average
size: 36 nm [640]

3.5. Microwave Hydrothermal Synthesis of ZnO Nanostructures with Additional Heat Treatment

The additional heat treatment process at the temperature from 150 ◦C to 900 ◦C (Table 6) of
the microwave hydrothermal synthesis products is applied in order to remove organic impurities
and to cause thermal decomposition of unreacted substrates and intermediates, e.g., Zn(OH)2,
Zn5(OH)8(NO3)2·2H2O, Zn5(OH)8Cl2·H2O. The additional heat treatment process is applied mainly
when reaction products are obtained in an open vessel in a microwave oven, which results in reaching
a low reaction temperature (max. ca. 100 ◦C) (Table 6). The main disadvantage of the additional
heat treatment in terms of structure of the obtained ZnO NMs is the sintering of particles and the
increase in their size (recrystallisation process), which results in formation of large agglomerates/
aggregates/conglomerates. Thus obtained ZnO NMs, despite the use of efficient homogenisation
methods (e.g., ultrasounds), are characterised by a large average particle/ agglomerate/ aggregate size
and high polydispersity in water suspensions.

When discussing aspects of application of ZnO NMs in a dry form, the additional heat treatment
of samples improves the stability of nanostructures and gives unique properties by soaking ZnO in
various gaseous atmospheres, which may result in the formation of oxygen vacancies in their structure.
The controlled introduction of oxygen vacancies into ZnO NMs can manipulate their optical, electronic
and surface properties [746]. An example that confirms the advantages of heat treatment is the paper
by Gu et al. [654], where the authors used the obtained ZnO NMs for detecting gases. They used
the aqueous solution of Zn(NO3)2 with varied urea contents for the synthesis. At the first stage,
precursors were heated by microwaves for 40 min at the temperature of 90 ◦C, while at the second
stage, the samples, after rinsing and drying, were soaked in various gaseous atmospheres (O2, N2,
H2 and air) for 3 h at the temperature of 400, 500, and 600 ◦C. Gu et al. [654] obtained ZnO in the
form of 3D nanostructures. Figure 22 shows the impact of the change in the urea content on the
shape of the obtained 3D structures. With the lowest urea content (0.3 g) urchin-like structures were
obtained (Figure 22a), while as a result of adding a higher quantity of urea (3.0 g and 6.0 g) flower-like
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structures were obtained (Figure 22b,c). The change in the soaking temperature from 400 ◦C to 500 ◦C
caused a change in the shape of the flower structure and a change in the morphology of the nanoflakes
themselves (Figure 23a,b). Structures soaked at 600 ◦C were characterised by a ragged and porous
structure of the nanoflakes (Figure 23c).Nanomaterials 2020, 10, x FOR PEER REVIEW 40 of 150 
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Figure 22. SEM images of the precursors of ZnO nanostructures synthesised with different dosages
of urea: (a) 0.3 g, (b) 3.0 g, (c) 6.0 g. Reprinted from [654], Copyright (2014), with permission from
Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use
permission must be obtained from the rightsholder.
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Figure 23. SEM images of the flower-like ZnO soaked at different temperatures: 400 ◦C (a,d), 500 ◦C (b,e),
600 ◦C (c,f). Reprinted from [654], Copyright (2014), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission must be obtained
from the rightsholder.

The paper by Li et al. [652] is another example of application of 3D structures of ZnO obtained by
the microwave hydrothermal synthesis with an additional soaking process in applications related to
gas detection. For the synthesis of ZnO hollow microspheres, Li et al. [652] used a solution created by
mixing zinc acetate dihydrate (Zn(CH3COO)2·2H2O), trisodium citrate dihydrate (Na3C6H5O7·2H2O)
with aqueous ammonia (NH3·H2O). At the first stage, precursors were heated by microwaves for
40 min at the temperature of 90 ◦C, while at the second stage the samples, after rinsing and drying,
were soaked in an air environment for 4 h at the temperature of 400 ◦C. The mechanism of the ZnO
synthesis reaction proposed by Li et al. [652] was identical with the mechanism proposed by Klofac
et al. [574] per Equations (12)–(16). Figure 24 reveals how the authors controlled the morphology
of the change to the microsphere filling by changing the synthesis duration. Figure 25 presents
changes to the morphology caused by the change in the amounts of trisodium citrate dihydrate in the
precursor solution.
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Figure 24. SEM images of morphology evolution of ZnO microspheres prepared with 2 mmol trisodium
citrate dihydrate at 90 ◦C for 70 different microwave irradiation durations: (a) 10 min, (b) 20 min,
(c) 40 min, and (d) 45 min. (e) Schematic illustration of the formation process of a hollow ZnO
microsphere. Republished with permission of ©Royal Society of Chemistry from [652], Copyright
(2013), permission conveyed through Copyright Clearance Center, INC. All rights reserved. In order to
re-use permission must be obtained from the rightsholder.
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Figure 25. Products obtained with different amounts of trisodium citrate dihydrate at 90 ◦C for 40 min:
(a–b) 0 mmol, (c–d) 0.08 mmol, (e–f) 0.2 mmol, and (g–h) 2 mmol. Republished with permission of
©Royal Society of Chemistry from [652], Copyright (2013), permission conveyed through Copyright
Clearance Center, INC. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.

Salah et al. [660] report developing a method of controlling the ZnO nanostructure size. They used
an aqueous mixture of zinc nitrate dehydrate (Zn(NO3)2·6H2O) with hexamethylenetetramine
(C6H12N4) as the reaction precursor. The first stage of microwave heating at the temperature of
120 ◦C lasted 10 min, and subsequently after rinsing and drying the synthesis products were soaked at
400 ◦C for 1 h. By applying various proportions of zinc nitrate dehydrate and hexamethylenetetramine
in the precursor mixture, the authors [660] controlled the size of the structures within a range from
several dozen nm to several µm (Figure 26). The change in the size of the ZnO structures was
accompanied by the change in their morphology from spherical nanoparticles (Figure 26a) in micro
sized hexagonal nanorods.
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molar ratios of Zn(NO3)2·6H2O and C6H12N4: (a) 3:20, (b) 5:20, (c) 12:20, (d) 20:20 and (e) 30:20.
Reprinted from [660], Copyright (2019), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER]. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.

Details of other research papers concerning the microwave hydrothermal synthesis of ZnO with
additional heat treatment are presented in Table 6.

Table 6. Summary of microwave hydrothermal synthesis of ZnO nanostructures with additional
heat treatment.

Substrates Conditions during
Preparation

Parameters of
Additional Heat

Treatment
Properties Ref.

Zn(CH3COO)2·2H2O, NH4OH,
H2O

duration: 5–10 min;
power: 240–400 W;

microwave oven
500 ◦C in air for 1 h dumbbell-shaped structures

built of particles sized ~100 nm [641]

Zn(CH3COO)2·2H2O, KOH, H2O

duration: 15 min
(irradiation 12 s,
stop 10 s); power:

180 W; microwave
oven

400 ◦C in air for 1 h

nanorods assembled in
flower shaped,

rods: diameter 150–190 nm (tip
diameter ~15 nm), length 2 µm,

with an aspect ratio of 20–22

[642,
643]

Zn(CH3COO)2·2H2O, NaOH,
guanidinium carbonate, acetyl

acetone (ACAC), H2O

pH: 8–12; duration:
2 min; power level:

75%; microwave
oven

without and 600 ◦C
in air for 2 h

petals: length 600–700 nm,
width 300–400 nm, tip 50–70 nm;

rod-like nanostructures
diameters 60–90 nm maximal

length 1.5 µm;
spherical-like nanostructures:

diameter 50 nm

[644]

Zn(CH3COO)2·2H2O (0.2 M),
NaOH (0.4 M), H2O,

triethanolamine (TEA, C6H15NO3)

duration: 20 min;
power: 20%;

microwave oven
900 ◦C in air for 1 h spherical particles ~50 nm [645]

Zn(NO3)2·6H2O,
hexamethylenetetramine

(C6H12N4), H2O

duration: 2 h;
microwave oven

250–550 ◦C for 1 h
in oxygen flow

(5 cm3/min)

nanorods (diameter from
50–300 nm) grown on surface of

silicon substrates
[568]
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Table 6. Cont.

Substrates Conditions during
Preparation

Parameters of
Additional Heat

Treatment
Properties Ref.

Zn(NO3)2·6H2O,
hexamethylenetetramine

(C6H12N4), polyethylenimine,
NH4OH, H2O

duration: 4–80 min;
power: 180–850 W;

microwave oven

350 ◦C for 20 min
in air

nanowire grown on an
ITO-coated glass substrate [646]

Zn(CH3COO)2·2H2O, NaOH, H2O
duration: 10 min;

power: 200 W;
microwave oven

400–800 ◦C for 1 h
in air

circular- and hexagonal-shaped
particles [647]

Zn(CH3COO)2·2H2O, sodium
dodecyl, NH4OH, (CH3)2CHOH

(2-propanol) H2O

duration: 2 h;
power: 100–800 W;

microwave oven
500 ◦C for 3 h in air

flakes-like structures,
spherical-like, crystallite size:

31–39 nm
(morphology dependent on the

microwave power)

[648]

Zn(CH3COO)2·2H2O, ZnCl2·2H2O,
Zn(NO3)2·6H2O, pyridine (C5H5N),

H2O

pH: 13.75; duration:
2–5 min; power:

1000 W; microwave
oven

300–500 ◦C for 2 h
in air

nanoparticles, nanoflowers,
nanorods [649]

Zn(CH3COO)2·2H2O, urea, H2O
T: 220 ◦C; duration:
15 min; microwave

oven

400 ◦C for 90 min
in air nanosheets [650]

Zn(NO3)2·6H2O,
hexamethylenetetramine
(C6H12N4), NaOH, H2O

pH: 13; T:
90–220 ◦C;

duration: 15 min;
power: 110–710 W;
microwave reactor

(1400 W)

200 ◦C for 2 h in air nano-platelets [651]

Zn(CH3COO)2·2H2O, trisodium
citrate dihydrate

(Na3C6H5O7·2H2O) (different
amounts), NH4OH, H2O

T: 90 ◦C; duration:
10–45 min; power:
300 W; microwave

reactor

400 ◦C for 4 h in air
hollow microspheres average
dimensions ~4 µm; thickness

400–600 nm.
[652]

Zn(NO3)2·6H2O, NH4OH, albumen,
H2O

pH: 8; duration:
5 min; microwave

oven (1000 W)
130 ◦C for 5 h in air

whisker-like and rod-like
nanostructures: thickness

10–57 nm
[585]

Zn(NO3)2·6H2O, KOH, H2O

pH: 9–13; duration:
30 min; power:

180 W microwave
oven

200 ◦C for 2 h in
vacuum nanorods [653]

Zn(NO3)2·6H2O, urea (different
concentrations), H2O

T: 90 ◦C; duration:
40 min; power:

400 W microwave
oven

400–600 ◦C for 3 h
in different

atmospheres (O2,
N2, H2 and air),

various flower-like nano and
microstructures, urchin-like

structures
[654]

Zn(CH3COO)2·2H2O, NH4OH,
hexamethylenetetramine

((CH2)6N4), hexadecyl trimethyl
ammonium bromide, polyethylene

glycol (PEG400), H2O

duration: 10 min;
power: 300 W;

microwave reactor
500 ◦C for 2 h in air

needle-assembled structures
with flower-like morphology;
bundle-like microstructures

assembled by nanorods;
flower-like hierarchical

structures composed of some
tight aggregations

[655]

Zn(CH3COO)2·2H2O, trisodium
citrate dihydrate

(Na3C6H5O7·2H2O), urea, H2O

T: 140 ◦C; duration:
20 min; microwave

reactor
500 ◦C for 2 h in air porous core–shell

microstructures [656]

Zn(NO3)2·6H2O, NaOH, H2O,

pH: 13; duration:
1–5 min with 30 s

on–off cycling
mode; power:

900 W; microwave
oven

400 ◦C for 1 h in air microspheres [657]

Zn(CH3COO)2·2H2O, NaOH, H2O,

pH: 12.66–13;
duration:

10–30 min; power:
300 W; microwave

reactor

500 ◦C for 2 h in air nanorods, nanoplates [658]
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Table 6. Cont.

Substrates Conditions during
Preparation

Parameters of
Additional Heat

Treatment
Properties Ref.

Zn(NO3)2·6H2O,
hexamethylenetetramine

(C6H12N4), H2O

duration: 45 min;
power: 1800 W;
microwave oven

350 ◦C for 1 h in air nanorods, length: ~4.3 ± 0.2 µm,
diameter: 100 ± 10 nm [659]

Zn(NO3)2·6H2O,
hexamethylenetetramine (C6H12N4)

(different concentrations), H2O

duration: 10 min;
power: 750 W;

microwave reactor
400 ◦C for 1 h in air

shape from random spherical to
highly conserved hexagonal

shaped rods, size: from ~25 nm
to µm/sub µm

[660]

Zn(NO3)2·6H2O,
hexamethylenetetramine

(C6H12N4), hydrazine hydrate
(N2H4), H2O

pH: 10;
duration: 10–30
min; microwave
reactor (1000 W)

500 ◦C for 2 h in air nanorods, length: 579–909 nm,
diameter: 116–240 nm [661]

Zn(CH3COO)2·2H2O, Tuber
(Amorphophallus konjac) extract,

H2O

duration: 5 min;
microwave oven 400 ◦C for 1 h in air

rice shaped nanoparticles,
length: 237 nm,

diameter: 76 nm
[662]

ZnCl2, NaOH, H2O

pH: 6.1–13.7; T: 80
◦C; duration: 5–20
min; microwave
reactor (900 W)

150 ◦C for 3 h in air

hexagonal flake, velvet
flower-like, rough globular,

needle bunch-like,
cauliflower-like, clew-like,

nanorods, and rhombic
microstructures

[663]

Zn(CH3COO)2·2H2O, ZnCl2·3H2O,
Zn(NO3)2·6H2O, ZnSO4·7H2O,

NH4OH, H2O

duration: 10 min;
microwave reactor 600 ◦C for 2 h in air

nanoflakes, nanorods,
hexagonal tubular,
pseudo-spherical

[664]

Zn(NO3)2·6H2O, NaOH, H2O
(solvent) and C2H5OH (solvent)

P: 20–40 bars;
duration: 15 min;

microwave reactor
750 ◦C for 1 h in air particles, irregular shape [665]

ZnCl2·3H2O, H2O, microcrystalline
cellulose

T: 100 ◦C;
duration:

10–60 min;
microwave oven

600 ◦C for 3 h in air heterogeneous nanostructures
and microstructures [666]

Zn(CH3COO)2·2H2O, ZnCl2·3H2O,
ZnSO4·7H2O, ZnCO3, Psidium

guajava Linn. Extract, H2O

T: 100 ◦C; duration:
varying cycles of 3

min-on and 1
min-off min;

power: 720 W;
microwave oven

900 ◦C for 1.5 h in
air diameter: 60–180 nm [667]

Zn(NO3)2·6H2O, pelargonium leaf
extract, H2O

duration: 3 min;
power: 800 W;

microwave oven
400 ◦C for 2 h in air heterogeneous particles [668]

ZnSO4·7H2O (different
concentrations), banana corm

extract, H2O

duration: 15 min;
power: 540 W;

microwave oven
400 ◦C for 3 h in air microparticles [669]

Zn(CH3COO)2·2H2O, KOH, H2O

duration:
0.5–2 min;

microwave oven
(1000 W)

400 ◦C for 1 h in air
nanorods, tetrapods (length:

255 nm), flowers (petal length:
387 nm)

[670]

Zn5(OH)8(NO3)2·2H2O, 1,2,3-
trimethyl-imidazole

tetrafluoroborate, H2O

duration: 2 h;
power: 180 W;

microwave oven
(900 W)

400 ◦C for 2 h in air
nanobelts, width: 500–800 nm;
length: several micrometres,

thickness: 100 nm
[671]

Zn(CH3COO)2·2H2O, NH4OH,
C2H5OH, H2O

T: 120 ◦C; duration:
10 min; power:

180 W; microwave
reactor

527 ◦C in air heterogeneous hollow NPs, SSA:
17.1 m2/g [672]

Zn(NO3)2·6H2O, NaOH,
polyethylene glycols (MW= 1500
and MW= 4000), sugar, cassava

starch, H2O

duration: 10 min
(with 5 s/15 s
on/off step);

power: 320 and
480 W;

microwave oven

450 ◦C for 1 h in air
rod-like structures and

needle-like structures, length:
300–3000 nm

[673]
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3.6. Types of ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Microwave
Hydrothermal Synthesis

The microwave hydrothermal synthesis enables obtaining ZnO doped with the following ions:
Cd2+ [698], Ce4+ [686,687,693], Co2+ [688–691,728,729], Cu2+ [695], Cr3+ [727,728], Eu3+ [694,731],
Fe2+ [678–685], Ga3+ [696,697], K+ [692], Mn2+ [674,675], Sn4+ [733], and Sr2+ [699].

The microwave hydrothermal synthesis enables obtaining the following composite and hybrid
materials: ZnO/ZnMn2O [676,677], ZnO/ZnFe2O4 [680–685], ZnO/ZnS [700], Au-decorated ZnO [701,
702,738], Ag-decorated ZnO [638,703–706,735], reduced graphene oxide [707–713], ZrO2 coated
ZnO [717], Fe3O4/ZnO/AgBr [719], MoS2/ZnO [720], ZnO doped CeO2 [721], mesoporous Si@ZnO [722],
ZnO/zinc aluminium hydroxide [723], ZnO/TiO2 [724,725], ZnO/CuO [726], CdO-ZnO [730],
and In2O3-ZnO [732].

3.7. ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Microwave Hydrothermal Synthesis
without Any Additional Heat Treatment

The potential of the microwave hydrothermal synthesis in obtaining ZnO hybrid nanostructures
is proved by the results achieved by Cho et al. [723]. The paper by Cho et al. [723] is one of the more
interesting publications reporting a synthesis of hierarchical hexagonal zinc oxide/zinc aluminium
hydroxide heterostructures through epitaxial growth using microwave irradiation. For obtaining a
substrate being zinc aluminium layered double hydroxide heterostructures (ZnAl:LDH), the authors
used the solution of zinc acetate dihydrate (Zn(CH3COO)2·2H2O), aluminium chloride (AlCl3) and
ammonia water (NH3·H2O). The microwave hydrothermal synthesis of ZnAl:LDH lasted 20 min at
the temperature of 95 ◦C. The product, ZnAl:LDH substrate, was thoroughly rinsed and dried after
the synthesis. Depending on the selected synthesis parameters and modifications of the precursor
composition, the authors obtained various structures that grew on the surface of the ZnAl:LDH
substrate, namely: hexagonal ZnO nanorods (Figures 27 and 28), sunflower-like ZnO nanorods
(Figure 29), ZnO nanotubes (Figure 30) and ZnO film (Figure 31). The process of ZnO nanorod growth
on the substrate surface was as follows: the substrate (ZnAl:LDH) was introduced to the solution of
the mixture of Zn(CH3COO)2·2H2O and NH4OH and was subjected to microwave heating (20 min,
95 ◦C), and subsequently the product was rinsed with deionised water and dried. On the surface of
some of the substrates, the growing ZnO nanorods formed repeatable patterns, which can be seen in
Figure 28. The formation mechanism of these regular patterns was not tested by the authors [723],
but the occurring regular patterns indicate that the nucleation of ZnO on the surface of the ZnAl:LDH
strongly depends on the atomic arrangements of the ZnAl:LDH surface. The process of sunflower-like
ZnO nanorod growth on the substrate surface (Figure 29) was virtually identical to the growth of
ZnO nanorods apart from the applied Zn(CH3COO)2·2H2O concentration, which was increased twice
relative to the original solution used for the growth of ZnO nanorods. The growth of ZnO nanotubes
(Figure 30) on the ZnAl:LDH surface, in turn, consisted in introducing the substrate to the solution
of the mixture of Zn(CH3COO)2·2H2O with NH4OH and subjected to microwave heating (20 min,
95 ◦C), and subsequently the suspension was aged at the room temperature for 10 h, after which
the product was rinsed with deionised water and dried. For the synthesis of a 2D ZnO film on the
surface of ZnAl:LDH heterostructures, the composition of the precursor solution was modified by
adding tripotassium citrate monohydrate (HOC(COOK)(CH2COOK)2·H2O). As a result of microwave
heating, sandwich-like heterostructures were obtained (Figure 31). In our opinion, the results of that
paper indicate that the microwaves could have potentially acted as a stimulator of a stereochemical
reaction (i.e., spatial orientation of the structure). The reaction temperature was not high, merely 95 ◦C,
where an identical temperature could have been reached by pre-soaking of substrates on a heating
plate, but the clear spatial organisation of the structure (Figures 27–31) suggests the participation of
additional mechanisms, e.g., an electromagnetic field.
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Figure 27. SEM images of hexagonal ZnO nanorod/zinc aluminium layered double hydroxide 

heterostructures: (a) low magnification; (b) medium magnification; (c) high magnification; (d) high-

magnification oblique view image of ZnO nanorods grown on a zinc aluminium layered double 

hydroxide; (e) TEM image of a ZnO nanorod detached from a heterostructure; (f) High-resolution 

transmission electron microscopy (HRTEM) image of the point marked by the centre of the circle in 

(e). The inset is the SAED pattern. Republished with permission of © The Royal Society of Chemistry, 

from [723], Copyright (2009), permission conveyed through Copyright Clearance Center, INC. All 

rights reserved. In order to re-use permission must be obtained from the rightsholder. 

 

Figure 28. SEM images of the ZnO nanorod/ZnAl:LDH heterostructures with ZnO nanorod patterns 

on ZnAl:LDHs. Republished with permission of © The Royal Society of Chemistry, from [723], 

Copyright (2009), permission conveyed through Copyright Clearance Center, INC. All rights 

reserved. In order to re-use permission must be obtained from the rightsholder. 

Figure 27. SEM images of hexagonal ZnO nanorod/zinc aluminium layered double hydroxide
heterostructures: (a) low magnification; (b) medium magnification; (c) high magnification;
(d) high-magnification oblique view image of ZnO nanorods grown on a zinc aluminium layered double
hydroxide; (e) TEM image of a ZnO nanorod detached from a heterostructure; (f) High-resolution
transmission electron microscopy (HRTEM) image of the point marked by the centre of the circle in
(e). The inset is the SAED pattern. Republished with permission of©The Royal Society of Chemistry,
from [723], Copyright (2009), permission conveyed through Copyright Clearance Center, INC. All rights
reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 28. SEM images of the ZnO nanorod/ZnAl:LDH heterostructures with ZnO nanorod patterns on
ZnAl:LDHs. Republished with permission of©The Royal Society of Chemistry, from [723], Copyright
(2009), permission conveyed through Copyright Clearance Center, INC. All rights reserved. In order to
re-use permission must be obtained from the rightsholder.
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magnification; (b,c) medium magnification; (d) high magnification; (e) schematic illustration of the 
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Figure 30. SEM images of hexagonal ZnO nanotubes/ZnAl:LDH heterostructures: (a) low 

magnification; (b) medium magnification (plan view); (c) medium magnification (oblique view); (d) 

high-magnification oblique view image of ZnO nanotubes grown on ZnAl:LDH; (e) HAADFSTEM 

image of a ZnO nanotube detached from a heterostructure; (f) TEM image of the ZnO nanotube; (g) 

SAED pattern; (h) HRTEM image of the point marked by the centre of the circle in (f). Republished 

with permission of © The Royal Society of Chemistry, from [723], Copyright (2009), permission 
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Figure 29. SEM images of sunflower-like ZnO nanorods/ZnAl:LDH heterostructures: (a) low
magnification; (b,c) medium magnification; (d) high magnification; (e) schematic illustration of
the formation of the sunflower-like ZnO nanorods/ZnAl:LDH heterostructures. Republished with
permission of©The Royal Society of Chemistry, from [723], Copyright (2009), permission conveyed
through Copyright Clearance Center, INC. All rights reserved. In order to re-use permission must be
obtained from the rightsholder.
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Figure 30. SEM images of hexagonal ZnO nanotubes/ZnAl:LDH heterostructures: (a) low magnification;
(b) medium magnification (plan view); (c) medium magnification (oblique view); (d) high-magnification
oblique view image of ZnO nanotubes grown on ZnAl:LDH; (e) HAADFSTEM image of a ZnO nanotube
detached from a heterostructure; (f) TEM image of the ZnO nanotube; (g) SAED pattern; (h) HRTEM
image of the point marked by the centre of the circle in (f). Republished with permission of©The Royal
Society of Chemistry, from [723], Copyright (2009), permission conveyed through Copyright Clearance
Center, INC. All rights reserved. In order to re-use permission must be obtained from the rightsholder.
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heterostructure. A corresponding electron diffraction (SAED) pattern and a HRTEM image of the 
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nm 
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duration: 15 
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microwave 
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size of ZnO and ZnMn2O4 

was 99 and 27 nm, 
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3.05 at%) doped 

ZnO 

ZnSO4·7H2O, FeSO4·7H2O, NaOH, 

H2O 

power: 140 W; 

microwave 

oven 

nanorods length 1 µm and 

diameter in the range of 50 

nm 

[678] 

Fe doped ZnO 
Zn(CH3COO)2·2H2O, Fe(NO3)3⋅9H2O, 

NH4(OH), H2O 

T: 80 °C; 

power: 400 W; 

duration: 40 

star-like structure (433 nm) [679] 

Figure 31. SEM images of hexagonal ZnO film/ZnAl:LDH heterostructures: (a) low magnification;
(b) high-magnification image of the surface of the ZnO film; (c) high-magnification image of the side
of the ZnO film/ZnAl:LDH heterostructures; (d) TEM image of a hexagonal ZnO film/ZnAl:LDH
heterostructure. A corresponding electron diffraction (SAED) pattern and a HRTEM image of the point
marked by a circle are inserted as the upper and lower insets, respectively; SEM images of the less
dense ZnO nucleation areas of the heterostructures: (e) plan view; (f) oblique view. Republished with
permission of©The Royal Society of Chemistry, from [723], Copyright (2009), permission conveyed
through Copyright Clearance Center, INC. All rights reserved. In order to re-use permission must be
obtained from the rightsholder.

Details of other research papers concerning the microwave hydrothermal synthesis of ZnO with
additional heat treatment are presented in Table 7.

Table 7. Summary of the microwave hydrothermal synthesis of ZnO nanocomposites or ZnO hybrid
nanostructures without any additional heat treatment.

Type of
Composite Substrates Conditions during

Preparation Properties Ref.

Mn (5%) doped
ZnO

Zn(CH3COO)2·2H2O,
Mn(CH3COO)2·4H2O, NaOH,

polyvinylpyrrolidone

T: 60 ◦C, power: 700 W;
microwave oven

nanoparticles sized
10–59 nm [674]

Mn (5–70% wt%)
doped ZnO

Zn(NO3)2·6H2O,
Mn(NO3)2·4H2O, KOH, H2O

P: 38 bars; duration:
15 min; microwave

reactor

nanoparticles, irregular
spherical shape, ZnO and

ZnMn2O4 phases, size:
33–99 nm

[675]

ZnO/ZnMn2O Zn(NO3)2·6H2O,
Mn(NO3)2·4H2O, KOH, H2O

P: 38 bars; duration:
15 min; microwave

reactor

ZnO (30 wt%)-MnO
(70 wt%); nearly spherical in
shape and agglomerated to

the form of irregular clusters;
crystallite size of ZnO and

ZnMn2O4 was 99 and 27 nm,
respectively; SSA = 25 m2/g

[676,677]

Fe (0.18, 1.70 and
3.05 at%) doped

ZnO

ZnSO4·7H2O, FeSO4·7H2O,
NaOH, H2O

power: 140 W;
microwave oven

nanorods length ~1 µm and
diameter in the range of

~50 nm
[678]

Fe doped ZnO
Zn(CH3COO)2·2H2O,

Fe(NO3)3·9H2O, NH4(OH),
H2O

T: 80 ◦C; power: 400 W;
duration: 40 min;
microwave oven

star-like structure (~433 nm) [679]
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Table 7. Cont.

Type of
Composite Substrates Conditions during

Preparation Properties Ref.

ZnO/ZnFe2O4, Fe
(5–95%) doped

ZnO

Zn(NO3)2·6H2O,
Fe(NO3)2·4H2O, KOH, H2O

P: 39 bars; duration:
15 min; microwave

reactor

particles, irregular spherical
shape, diameter 4–13 nm [680–685]

Ce (0–0.15 mol)
doped ZnO

Zn(CH3COO)2·2H2O,
Ce(SO4)2, NaOH, H2O

pH: 13; duration:
10 min; power: 55%;

microwave oven
(1000 W)

nanosheets [686]

Ce doped ZnO
Zn(CH3COO)2·2H2O,
Ce(CH3COO)3·xH2O,

NH3·H2O, H2O

pH: 9.5–11; duration:
5–15 min (10/20 s

power on/off); power:
200 W; microwave

oven

heterogeneous particles (2%
of dopant) [687]

CoO doped ZnO Zn(NO3)2·6H2O,
Co(NO3)2·4H2O, KOH, H2O

duration: 15 min;
pressure: 38 bar;

microwave reactor

CoO content from 5 to 50%,
particles >100 nm [688–691]

K (0–5 mol%)
doped ZnO Zn(NO3)2·6H2O, KNO3, H2O

T: 160 ◦C; duration:
30 min; microwave

reactor

lamellar-like and
granule-like structures

(100–300 nm)
[692]

Ce (5 wt%)
doped ZnO,

Ce (5 wt%) doped
carbon

nanotube/ZnO

Zn(CH3COO)2·2H2O,
Ce(SO4)2, NaOH, H2O,

commercial multi-walled
carbon nanotubes (length 5–9
µm, diameter 110–170 nm)

pH: 11; duration:
5 min; power: 450 W;

microwave oven

nanorods on carbon
nanotubes [693]

Eu doped ZnO
Zn(NO3)2·5H2O,

Eu(NO3)3·5H2O, NH4(OH),
H2O

pH: 10; pressure:
1–100 bar; duration:
20 min; microwave

reactor

nanoplate-like structures,
elongated hexagonal prisms [694]

Cu doped ZnO
Zn(CH3COO)2·2H2O,

Cu(CH3COO)2·2H2O, NaOH,
H2O

T: 100 ◦C; duration:
20 min; microwave

reactor

Zn1−xCuxO (x = 0.00, 0.01,
0.02, 0.03, and 0.04), particles [695]

Ga doped ZnO
Zn(CH3COO)2·2H2O,

Ga(NO3)3·xH2O, NH4(OH),
H2O

pH: 10; duration:
15–20 min; microwave

oven (850 W)

Zn(1−x)GaxO (x = 1, 2, and
5 mol%), nanorods are

grown on p-Si substrates
[696]

Ga doped ZnO Zn(CH3COO)2·2H2O,
Ga(NO3)3·xH2O, KOH, H2O

T: 180 ◦C; duration:
15 min; power 250 W;

microwave reactor
(1900 W)

Zn(1-x)GaxO (x = 0, 0.05, 1.00,
3.00 mol%), micron-sized

rods (slightly above 1 mm in
length)

[697]

Cd doped ZnO/
carbon nanotube

commercial carbon nanotube
diameter 10–20 nm and length

30 µm (modified HNO3),
Zn(CH3COO)2·2H2O,

Cd(NO3)2·5H2O, NH4(OH),
H2O

pH: 10; duration:
6 min; power: 490 W;

microwave reactor
(1000 W)

growing Cd doped ZnO
nanoparticles over the

surface of carbon nanotube
[698]

Sr doped ZnO
Zn(NO3)2·6H2O,

Sr(NO3)2·6H2O (different
concentrations), NaOH, H2O

T: 160 ◦C, duration:
30 min; microwave

reactor

Zn1−xSrxO (x = 0.00, 0.001,
0.002, and 0.003),

ZnO - lamellar structures,
size: 200–300 nm; Zn1−xSrxO

- heterogeneous granule
nano and microstructures

[699]

ZnO/ZnS ZnCl2·2H2O, NH4(OH),
thioacetamide, H2O

duration: 30 min;
power: 400 W;

microwave refluxing
system

core–shell nanorods [700]

Au-decorated ZnO

Zn(NO3)2·6H2O,
hexamethylenetetramine,

NaOH, HAuCl4·3H2O,
sodium citrate dihydrate, H2O

duration: 10 min;
power: 475 W;

microwave oven

growing Au NPs (~20 nm)
over the surface of ZnO
nanorods (diameter of
162 nm and an average

length of 1.27 µm)

[701]
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Table 7. Cont.

Type of
Composite Substrates Conditions during

Preparation Properties Ref.

Au-decorated ZnO
Zn(CH3COO)2·2H2O,

Ag(NO3)·6H2O, C6H12N4,
H2O

duration: 5 min;
microwave oven

ZnO particles sized up to
2 µm and spherical particles

are sized up to 200 nm
[702]

Ag-decorated ZnO

ZnO, Ag(NO3),
cetyltrimethylammonium

bromide (CTAB, C19H42BrN),
H2O

duration: 20 min;
power: 900 W;

microwave oven

spike-like nanostructures,
length: few microns,
diameter: 50–100 nm

[638]

Ag-ZnO Zn(NO3)2·6H2O, Ag(NO3),
C6H12N4, H2O

T: 120 ◦C, duration: 30
min; power: 400 W;
microwave reactor

star-like structures (up to
2 µm), rod-like structures

(~0.5 µm)
[703]

Ag-ZnO
Zn(CH3COO)2·2H2O, AgNO3,
C2H4(OH)2 (ethylene glycol,

EG), Na2O2, H2O

duration: 5 min;
power: 400 W,

microwave oven

flower-like structures
Ag-ZnO with a molar ratio

of 0:100; 2:98; 4:96; 6:94; 8:92;
10:90

[704]

Ag-ZnO ZnO (nanorods 10–20 nm),
AgNO3, glucose, H2O

pH: 7; duration:
10 min; microwave

oven

Ag/ZnO nanoparticles (ZnO
nanorods 10–20 nm; Ag
nanoparticles ~60 nm)

[705]

Ag-ZnO-clay
composite,
ZnO-clay
composite

chemically activated bentonite
clay, AgNO3, ZnO NPs, H2O

T: 80 ◦C, duration:
20 min; power: 500 W;

microwave reactor

nanoparticles in clay, ZnO
NPs size 15–70 nm, Ag NPs

size 9–30 nm,
SSA(ZnO-clay) = 33 m2/g,

SSA(Ag-ZnO-clay) =
25 m2/g

[706]

ZnO-reduced
graphene oxide

graphite (modified Hummers
method), ZnSO4·7H2O,

NaOH, H2O

pH: 8; T: 150 ◦C,
duration: 10 min;

microwave reactor

graphene nanosheets are
decorated densely by ZnO

nanosheets (20–30 nm),
[707]

ZnO-reduced
graphene oxide

graphite (modified Hummers
method), ZnSO4·7H2O,

NaOH, H2O

pH: 9; T: 150 ◦C,
duration: 30 min;

microwave reactor

graphene sheets packed by
nanosized and irregularly
shaped ZnO nanoparticles

[708]

ZnO-reduced
graphene oxide

graphite (modified Hummers
method), Zn(NO3)2·6H2O,

NaOH, H2O

pH: 9–11; T: 100 ◦C,
duration: 30 min;

microwave reactor

reduced graphene oxide
sheets with wrinkles and

folds are decorated densely
by the ZnO nanorods

[709]

ZnO-reduced
graphene oxide

graphite (modified Hummers
method),

Zn(CH3COO)2·2H2O,
HN(CH2CH2NH2)2, NaOH,

H2O

pH: 13; duration:
30 min; microwave

oven

reduced graphene oxide
sheets with ZnO rod-like
(diameter ~100 nm and

length ~1 µm)

[710]

ZnO-reduced
graphene oxide

graphite (modified Hummers
method), ZnCl2·2H2O, NaOH,

H2O

duration: 5 min;
power: 450 W;

microwave oven

nanowires of ZnO were
decorated/anchored on the
surface of graphene oxide

[711]

ZnO-reduced
graphene oxide

graphite (modified
Hummers method),

Zn(CH3COO)2·2H2O,
NaOH, H2O

duration: 20 min;
power: 450 W;

microwave oven

reduced graphene oxide
sheets with ZnO

nanoparticles (10–20 nm)
[712]

ZnO-reduced
graphene oxide

graphite (modified Hummers
method),

Zn(CH3COO)2·2H2O,
KOH, H2O

T: 100 ◦C; duration:
8 min; power: 450 W;

microwave reactor

reduced graphene oxide
sheets with ZnO

nanoparticles (irregular
elongated shapes and

agglomerates with particle
size of 122 nm)

[713]

ZnO, ZnO-reduced
graphene oxide

graphite (modified Hummers
method), Zn(NO3)2·6H2O,
hexamethylenetetramine

(HMTA),
polyvinylpyrrolidone (PVP),

H2O

T: 100 ◦C; duration:
8 min; power: 450 W;

microwave reactor

reduced graphene oxide
nanosheets with ZnO

nanostars, SSA = 34.3 m2/g,
size of ZnO nanostars:

~625 nm

[526]

ZnO-TiO2-reduced
graphene oxide

graphite (modified Hummers
method), commercial TiO2,
ZnSO4·7H2O, NaOH, H2O

pH: 9; T: 150 ◦C,
duration: 10 min;

power: 150 W;
microwave reactor

reduced graphene oxide
nanosheets are decorated by

ZnO nanosheets and TiO2
nanoparticles

[714]
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Table 7. Cont.

Type of
Composite Substrates Conditions during

Preparation Properties Ref.

ZnO-MOF-reduced
graphene oxide

zeolitic imidazolate
framework-8, graphite

(modified Hummers method),
ZnO, H2O2, H2O

T: 150 ◦C, duration:
10 min; power: 150 W;

microwave reactor

ZnO-MOF-reduced
graphene oxide with 0, 0.5,
1.0, 1.5 and 2 wt% reduced

graphene oxide

[715]

ZrO2-ZnO
ZnSO4·5H2O (1 M), Na2CO3
(2 M), ZrOCl2·8H2O (1 M),

H2O

T: 180 ◦C, duration:
10 min; microwave

reactor

needle-shaped micro- and
nanoparticles, mass

concentrations of ZrO2: 1%,
5%, 10%, 20%

[716]

ZrO2 coated ZnO
ZnO NPs (diameter: 12–25 nm,
38.4 m2/g), (Zr(SO4)2·4H2O),

NH4OH

T: 70 ◦C, duration:
5 min; microwave

reactor (500 W)
core-shell nanocomposites [717]

ZnO
chitosan/ZnO

Zn(NO3)2·2H2O, NaOH,
chitosan, H2O

duration: 4–8 min;
power: 400–800 W;

microwave oven

nanoparticles, diameter:
32–82 nm [718]

Fe3O4/ZnO/AgBr

Zn(NO3)2·2H2O, FeCl3,
AgNO3, NaBr, NH4OH,

NaOH, C2H5OH, malt extract
agar (MEA), H2O

duration: 10 min;
power: 550 W (55%);

microwave oven
(1000 W)

composition (weight ratio):
Fe3O4/ZnO (1:8),

Fe3O4/ZnO/AgBr (1:2; 1:4;
1:6; 1:8; 1:10);

in homogeneous oval
particles

[719]

MoS2/ZnO,
ZnO

ZnCl2·2H2O, Na2MoO4·2H2O,
C2H5NS, H2O

T: 60 ◦C; duration:
20 min; power: 140 W

heterogeneous nano- and
microstructures [720]

ZnO doped CeO2
ZnCl2·2H2O, Ce(NO3)3·6H2O;

NH4OH, H2O

pH: 8; T: 200 ◦C,
duration: 30 min;

microwave reactor
(1500 W)

homogeneous spherical
particles (diameter ≈

5–40 nm)
[721]

mesoporous
Si@ZnO

Zn(NO3)2·6H2O,
3-aminopropyl trimethoxy

silane (APTMS,
(CH3O)3-Si-(CH2)3NH2),

LiOH, H2O

T: 80 ◦C; duration: 30
min; power: 300 W;
microwave reactor

(1000 W)

APTMS/ZnO molar ratios:
0.15, 0.2, 0.3 and 0.4.;

agglomerate size ≈ 200 nm
[722]

ZnO/zinc
aluminium
hydroxide

Zn(CH3COO)2·2H2O, AlCl3,
NH4OH, tripotassium citrate

monohydrate
(HOC(COOK)(CH2COOK)2·H2O,

H2O

T: 95 ◦C; duration:
20 min; microwave

reactor

ZnO nanorod on zinc
aluminium hydroxide

heterostructures;
sunflower-like ZnO

nanorods on zinc aluminium
hydroxide heterostructures;

ZnO nanotubes on zinc
aluminium hydroxide

heterostructures; ZnO film
on zinc aluminium

hydroxide heterostructures

[723]

3.8. ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Microwave Hydrothermal Synthesis
with Additional Heat Treatment

As already mentioned, the additional soaking process of the microwave hydrothermal synthesis
product aims, above all, to complete the conversion of the substrates or intermediates. In the case of a
synthesis of doped ZnO, additional heat treatment mostly leads to the precipitation of foreign phases,
e.g., Cr2O3 [727,728], Eu2O3 [731], and SnO2 [733]. Depending on the type of gaseous atmosphere,
dopants may also undergo a partial oxidation or reduction process. Synthesis products subjected to
an additional soaking process may be also characterised by a compact structure, where the particles
are sintered or strongly agglomerated, which is indicated, e.g., by the results of the research by
Bhattia et al. [728] in Figure 32.
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material with the use of an additional soaking process is the paper by Cao et al. [736], which describes 

Figure 32. SEM images of doped ZnO: (a) 15% Co doped ZnO, (b) 15% Cr doped ZnO. Reprinted
from [728], Copyright (2017), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT
OWNER]. All rights reserved. In order to re-use permission must be obtained from the rightsholder.

One of the purposes of applying an additional process of synthesis product soaking is to give
unique features both to the doped ZnO materials and composite ZnO materials, which results in
the possibility to apply them e.g., as photocatalysts [724,732,734], gas sensors [725], dilute magnetic
semiconductors (DMS) for spintronics applications [728]. A good example of obtaining a hybrid material
with the use of an additional soaking process is the paper by Cao et al. [736], which describes obtaining
Ag/Ag2SO4/ZnO nanostructures. The authors [736] used the aqueous mixture of Zn(CH3COO)2·2H2O,
CO(NH2), CS(NH2)2 and AgNO3 as the precursor. The composition of the mixture was modified by
changing the molar ratio of thiourea and Ag+, which was kept at 1:2, 1:1, 2:1, respectively. The samples
were heated by microwaves for 30 min at the temperature of 170 ◦C, subsequently rinsed (water, ethanol)
and were subjected to calcination for 4 h at the temperature of 500 ◦C in the air atmosphere. Figure 33
contains XRD results of an example as-synthesised sample (only after the microwave synthesis) and
the XRD results of samples after an additional soaking process.
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Figure 33. Normalised XRD patterns of Ag/Ag2SO4/ZnO nanostructures: (a) as-synthesised for molar
ratio of thiourea and Ag+ kept at 1:1 before calcination, (b) pure ZnO, (c) synthesised for molar
ratio of thiourea and Ag+ kept at 1:2, (d) synthesised for molar ratio of thiourea and Ag+ kept at
1:1 and (e) catalysts after calcination synthesised for molar ratio of thiourea and Ag+ kept at 2:1
(♦—ZnO, �—Ag2SO4, *—Ag, +—Ag2S, •—Zn5(CO3)2(OH)6). Reprinted from [736], Copyright (2015),
with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. In order to re-use
permission must be obtained from the rightsholder.
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The as-synthesised sample reveals a considerable quantity of foreign inclusions, above all
Zn5(CO3)2(OH)6 product (intermediate, by-product). The authors [736] proposed a mechanism of the
formation of (Zn5(CO3)2(OH)6) by-product and main products (ZnO, Ag2S), which is described by the
following Equations (22)–(30):

CO(NH3)2 + H2O T > 60 ◦C
−−−−−−−−→2NH3

+ + CO2 (22)

CS(NH3)2 + 2H2O T > 60 ◦C
−−−−−−−−→2NH3

+ + H2S + CO2 (23)

NH3 + H2O
H2O
←−−→NH4

+ + OH− (24)

CO2 + 2OH−
H2O
←−−→CO3

2− + H2O (25)

5Zn2+ + 2CO3
2− + 6OH− MH

−−−→Zn5(CO3)2(OH)6 ↓ (26)

Zn2+ + 2OH− → Zn(OH)2 ↓ (27)

Zn(OH)2
MH
−−−→ZnO ↓ +H2O (28)

Zn5(CO3)2(OH)6 ↓
MH
−−−→5ZnO ↓ +2CO2 + 3H2O (29)

H2S + 2Ag+ MH
−−−→Ag2S ↓ +2H+ (30)

It must be underlined that ZnO, Ag2S and Zn5(CO3)2(OH)6 compounds were present in samples
obtained only as a result of the microwave synthesis. However, after the calcination (Figure 34),
the presence of such compounds as Ag2SO4 and metallic Ag was observed in the samples, which was
related to the soaking of samples in an oxidising atmosphere (air). During the soaking, Ag2S and
Zn5(CO3)2(OH)6 decomposed. In the sample with the highest addition of thiourea also ZnS formed.
The course of the oxidation process was explained by the following Equations (31)–(32):

Ag2S + O2
500 ◦C,4 h, air
−−−−−−−−−−−→2Ag ↓ +SO2 (31)

Ag2S + 2O2
500 ◦C,4 h, air
−−−−−−−−−−−→2AgSO4 ↓ (32)

An example morphology of the Ag/Ag2SO4/ZnO composite sample is shown in Figure 34.
The obtained plates structure was composed of multiple nanoparticles and had rough and irregularly
porous surfaces. Obtaining a plates structure was explained by Cao et al. [736] as follows: due to the
hydrolysis reactions of urea and thiourea, Ag2S/Zn5(CO3)2(OH)6/ZnO nanoparticles are obtained at
the first stage of microwave heating. At the second stage, the existing nanoparticles rapidly formed
into plates aggregates for the purpose of decreasing their surface energy. The plates shown in Figure 34
had the diameter of ca. 1.5–2 µm and the thickness of ca. 100–200 nm. The TEM image in Figure 34b
indicates monodispersity of Ag/Ag2SO4 NPs with the diameters of ca. 4–7 nm, which were uniformly
anchored on the surface of ZnO plates. Figure 34c presents two different kinds of the lattice fringes with
0.24 nm and 0.26 nm, corresponding to the distance of Ag (1 1 1) and ZnO (0 0 2) planes, respectively.
Figure 34d confirms the qualitative composition of the Ag2S/Ag2SO4/ZnO composite obtained by
Cao et al. [736].



Nanomaterials 2020, 10, 1086 49 of 140

Nanomaterials 2020, 10, x FOR PEER REVIEW 54 of 150 

 

H2S + 2Ag
+
  MH
→  Ag2S ↓ +2H

+  (30) 

It must be underlined that ZnO, Ag2S and Zn5(CO3)2(OH)6 compounds were present in samples 

obtained only as a result of the microwave synthesis. However, after the calcination (Figure 34), the 

presence of such compounds as Ag2SO4 and metallic Ag was observed in the samples, which was 

related to the soaking of samples in an oxidising atmosphere (air). During the soaking, Ag2S and 

Zn5(CO3)2(OH)6 decomposed. In the sample with the highest addition of thiourea also ZnS formed. 

The course of the oxidation process was explained by the following Equations (31)–(32): 

Ag2S + O2
  500 °C,   4 h,   air 
→            2Ag ↓ +SO2 (31) 

Ag2S + 2O2
  500 °C,   4 h,   air 
→            2AgSO4 ↓ + (32) 

An example morphology of the Ag/Ag2SO4/ZnO composite sample is shown in Figure 34. The 

obtained plates structure was composed of multiple nanoparticles and had rough and irregularly 

porous surfaces. Obtaining a plates structure was explained by Cao et al. [736] as follows: due to the 

hydrolysis reactions of urea and thiourea, Ag2S/Zn5(CO3)2(OH)6/ZnO nanoparticles are obtained at 

the first stage of microwave heating. At the second stage, the existing nanoparticles rapidly formed 

into plates aggregates for the purpose of decreasing their surface energy. The plates shown in Figure 

34 had the diameter of ca. 1.5–2 µm and the thickness of ca. 100–200 nm. The TEM image in Figure 

34b indicates monodispersity of Ag/Ag2SO4 NPs with the diameters of ca. 4–7 nm, which were 

uniformly anchored on the surface of ZnO plates. Figure 34c presents two different kinds of the lattice 

fringes with 0.24 nm and 0.26 nm, corresponding to the distance of Ag (1 1 1) and ZnO (0 0 2) planes, 

respectively. Figure 34d confirms the qualitative composition of the Ag2S/Ag2SO4/ZnO composite 

obtained by Cao et al. [736]. 

 

Figure 34. Figures should be placed in the main text near to the first time they are cited. A caption on 

a single line should be centered. (a) SEM image, (b) TEM image, (c) TEM image and (d) Energy 

dispersive spectroscopy (EDS) spectrum of Ag/Ag2SO4/ZnO nanostructures synthesised for ratio of 

thiourea and Ag+ of 1:1. Reprinted from [736], Copyright (2015), with permission from Elsevier [OR 

APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission 

must be obtained from the rightsholder. 
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dispersive spectroscopy (EDS) spectrum of Ag/Ag2SO4/ZnO nanostructures synthesised for ratio of
thiourea and Ag+ of 1:1. Reprinted from [736], Copyright (2015), with permission from Elsevier [OR
APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission
must be obtained from the rightsholder.

Details of other research papers concerning the microwave synthesis of ZnO nanocomposites or
ZnO hybrid nanostructures with additional heat treatment are presented in Table 8.

Table 8. Summary of the microwave hydrothermal synthesis of ZnO nanocomposites or ZnO hybrid
nanostructures with additional heat treatment.

Type of
Composite Substrates Conditions during

Preparation

Parameters of
Additional

Heat
Treatment

Properties Ref.

ZnO/TiO2

Zn(NO3)2·6H2O,
C4K2O9Ti·2H2O,
NH4(OH), H2O

pH: 10; duration:
40 min; power:

180 W; microwave
oven

without and T:
500–700 ◦C;

duration: 3 h

without calcination:
nanoparticles <10 nm;

after calcination:
nanoparticles 25 nm and

80–100 nm

[724]

ZnO/TiO2

Zn(CH3COO)2·2H2O,
titanium isopropoxide,

NaOH, H2O

T: 180 ◦C;
duration: 5 min;

microwave reactor
T: 500–800 ◦C

rods: diameters:
150–250 nm, length:

1000–2000 nm
[725]

ZnO/CuO
Zn(CH3COO)2·2H2O,
Cu(CH3COO)2·2H2O

NaOH, H2O

duration: 15 min;
power: 450 W;

microwave oven

T: 800 ◦C;
duration: 7 h nanorod like structures [726]

Cr doped ZnO
Zn(CH3COO)2·2H2O,

(Cr(CH3COO)2)2·2H2O,
NaOH, H2O

duration: 5 min;
power: 400 W;

microwave oven
(1350 W)

T: 700 ◦C;
duration: 2 h particles (~100 nm) [727]
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Table 8. Cont.

Type of
Composite Substrates Conditions during

Preparation

Parameters of
Additional

Heat
Treatment

Properties Ref.

Cr doped ZnO
Zn(NO3)2·6H2O,

Cr(NO3)3·9H2O, citric
acid (C6H8O7), H2O

microwave oven
(650 W)

250 ◦C for 1 h
in air

doped concentration
(5%, 10%, and 15%),

porous structures
[728]

Co doped ZnO
Zn(NO3)2·6H2O,

Co(NO3)2·6H2O, citric
acid (C6H8O7), H2O

duration: until
reaction was

completed; microwave
oven (650 W)

250 ◦C for 1 h
in air

doped concentration
(5%, 10%, and 15%),

porous structures
[728]

Co doped ZnO

Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O,
polyethylene glycol,

NaOH, H2O

pH: 9;
duration: 30 min;

power: 300 W;
microwave oven

T: 400 ◦C;
duration: 1 h

Zn1−xCoxO (x = 0.00,
0.01, 0.03 and 0.05),

needle shaped
microstructures,

nanospheres

[729]

CdO-ZnO ZnCl2·2H2O,
CdCl2·2H2O, NH4OH

pH: 8; duration:
10–20 min; microwave

oven (1000 W)

500 ◦C for 4 h
in air

heterogeneous
nanostructures and

microstructures
[730]

Eu doped ZnO
Zn(NO3)2·5H2O,
Eu(NO3)3·5H2O,

NaOH, H2O

pressure: 60 bar;
duration: 15 min;

microwave reactor
(600 W)

750 ◦C for 1 h
in air

10 mol% of Eu,
heterogeneous size and

shape of NPs
[731]

In2O3-ZnO
Zn(CH3COO)2·2H2O,

In(NO3)3·4.5H2O,
CO(NH2)2, H2O

T: 120 ◦C; duration:
30 min; power: 800 W;

microwave reactor

550 ◦C for 2 h
in air

n(In):n(Zn) (0.03:1, 0.05:1,
0.07:1), rods (long:

200–300 nm; wide 75 nm)
and flowers

[732]

Sn doped ZnO Zn(NO3)2·6H2O,
SnCl4, H2O

duration: 5 min;
microwave oven

400 ◦C for 3 h
in air

0, 5, 10 and 15 wt% Sn
doped ZnO; needle-like
structures for the pure

ZnO (30–70 nm);
agglomerated spherical

crystallites in all Sn
doped ZnO samples

[733]

ZnO-reduced
graphene oxide

graphite (modified
Hummers method),
ZnCl2·2H2O, NaOH,

H2O

duration: 2 min;
power: 450 W;

microwave oven

stainless steel
(SS-316) Teflon

lined
autoclaves

were kept at
150 ◦C in hot air

oven for 24 h

SSA: 140–182 m2/g;
flower-like ZnO

nanoparticles well
decked on

graphene/graphene
oxide sheet

[734]

Ag-ZnO
Zn(NO3)2·6H2O,

AgNO3, citric acid
(C6H8O7)

duration: 15–20 cycles
(cycling mode: on for
30 s and off for 30 s);

power: 800 W;
microwave oven

500 ◦C for 2 h
in air

nanoparticles; SSA:
61 m2/g; size: ~17 nm [735]

Ag/Ag2SO4/ZnO

Zn(CH3COO)2·2H2O,
AgNO3 (different

concentrations), urea,
thiourea (different
concentrations),

duration: 30 min;
power: 400 W;

microwave reactor

500 ◦C for 4 h
in air

plate-like aggregates,
diameter: 1.5–2 µm,

thickness: 100–200 nm
[736]

Ag-N co-doped
ZnO

Zn(NO3)2·6H2O,
hexamethylenetetramine

(HMT; C6H12N4),
CH3COONH4, AgNO3

duration: 40 min;
power: 500 W;

microwave oven

800 ◦C for 1 h
in oxygen

Ag-N co-doped ZnO
nanorods (diameter:

50–200 nm) were
vertically grown on
n-type Si substrate

[737]

Au-ZnO

Zn(NO3)2·6H2O,
hexamethylenetetramine

(HMT; C6H12N4),
hydrazine hydrate

(N2H4), HAuCl4, H2O

pH: 10; microwave
oven (1000 W)

500 ◦C in
oxygen

Au NPs on the surface of
ZnO nanorods (width:

140 nm, length: 626 nm)
Au size of NPs:

11–36 nm

[738]
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4. Microwave Solvothermal Synthesis of ZnO

According to the literature [747], a solvothermal synthesis is a process in a closed system, in which
chemical reactions take place exclusively in non-aqueous solvents at increased temperatures, at a
pressure that is higher than atmospheric pressure (P > 101,325 Pa). The literature [748,749] provides a
different definition of the solvothermal synthesis, e.g., it is a chemical reaction based on non-aqueous
solvents or their mixtures. The application of water mixtures and organic solvents in syntheses of
metal oxides made the definitions of the hydrothermal synthesis and the solvothermal synthesis often
used interchangeably. However, this is not reasonable and there is no need to use these definitions
interchangeably. The main reason for developing the solvothermal synthesis was attempts to obtain
non-oxide materials (in particular metal particles) [747–752]. In syntheses with the use of organic
solvents, the critical parameter is the temperature of the onset of initial decomposition, because after
exceeding this temperature solvents begin undergoing the thermal decomposition, polymerisation
or oxidation process. Solvothermal synthesis is much more expensive than hydrothermal synthesis,
which results from the costs of application of organic solvents, their disposal and the need to adapt the
laboratory (ventilation, laboratory fume hood, etc.). However, the costs related to the maintenance and
safe use of reactors operating in milder conditions of solvothermal synthesis are considerably lower
than in the case of high temperatures and pressures dedicated to hydrothermal syntheses. As a result,
the solvothermal technology is becoming cheaper, safer, and more popular year by year.

For the purposes of this review, we assume that the “solvothermal synthesis” is a process occurring
in an inorganic solvent environment (where ms > 50%), with the pressure equal to or higher than
atmospheric pressure. The results of the literature review concerning microwave solvothermal synthesis
of ZnO are divided into the following subgroups:

(1) Microwave solvothermal synthesis of ZnO nanostructures without any additional heat treatment,
where the literature review results [402,573,758–797] are summarised in Table 10.

(2) Microwave solvothermal synthesis of ZnO nanocomposites or ZnO hybrid nanostructures without
any additional heat treatment, where the literature review results [798–822] are summarised in
Table 11.

(3) Microwave solvothermal synthesis of undoped ZnO, ZnO nanocomposites or ZnO hybrid
nanostructures with additional heat treatment, where the literature review results [823–838] are
summarised in Table 12.

4.1. Reactants

The most popular organic solvents used for the microwave solvothermal synthesis of
ZnO according to the data derived from the literature review [758–838] (Tables 10–12) are
ethylene glycol (EG, C2H4(OH)2), ethanol (C2H5OH), diethylene glycol (DEG, (HOCH2CH2)2O),
propanol (C3H7OH), methanol (CH3OH), benzyl alcohol (C6H5CH2OH) and other solvents
(Figure 35). The following were used sporadically as a solvent in the microwave solvothermal
synthesis: acetone (C3H6O) [778], acetonitrile (C2H3N, [789]), alkoxyethanol [772], butanediol
(C4H8(OH)2) [769], butoxyethanol (CH3C3H6OC2H4OH) [772], ethoxyethanol (C2H5OC2H4OH) [772],
glycerol ((CH2OH)2CHOH) [822], hexanol (C6H13OH) [766], methoxyethanol (CH3OC2H4OH) [772],
N,N-dimethylacetamide (CH3CON(CH3)2) [792], mixture of oleic acid (C8H17CH=CH(CH2)7COOH)
with oleylamine [807], propanediol (C3H6(OH)2) [776], tetraethylene glycol (TTEG, C8H18O5) [402],
triethylene glycol (TEG, C6H14O4) [402], tetrahydrofuran (C4H8O, THF) [795], and polyethylene glycol
(PEG400) [768].

The popularity of solvents in microwave solvothermal syntheses is affected above all by such
factors as availability, price, toxicity and boiling point (Table 9). Ethylene glycol and diethylene glycol
are relatively cheap solvents, which are produced on an industrial scale and can be applied above
all as components of coolants and as components for production of polyester resins. Ethanol and
methanol are two most popular alcohols, which are applied on a global scale as primary solvents
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in organic syntheses. The application of organic solvents enables a considerable decrease in the
pressure, temperature, and duration of the process in relation to a synthesis of the same product
in water alone [839]. For example, the reaction of ZnO synthesis at the temperature of 230 ◦C in
water is characterised by the equilibrium pressure of ca. ~28 bar [839], while in ethylene glycol for
the same temperature the pressure is merely ~4 bar [502]. In a chemical reaction in the liquid state,
only temperature is important, while pressure is only a derivative of the process conditions.

Table 9. Summary of boiling points of several selected organic solvents for the pressure of 1013.25 hPa.

Solvent Boiling Point (◦C)

Acetone 56.2

Methanol 64.6

Tetrahydrofuran 65–66

Ethanol 78.5

2-Propanol 82.4

1-Propanol 97.0

Water 100.0

1-Butanol 117.6

1-Hexanol 156.5

Ethylene glycol 197.6

1,3-Butanediol 207.0

Benzyl alcohol 203–205

1,4-Butanediol 228.0

Diethylene glycol 244.9

Triethylene glycol 288.0

Glycerine 290.0

Tetraethylene glycol ~327
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The most popular reactants of the “Zn2+” zinc cation precursor used for ZnO synthesis
according to the data derived from the literature review [758–838] (Tables 10–12) are zinc
acetate (Zn(CH3COO)2·xH2O), zinc nitrate (Zn(NO3)2·6H2O), zinc acetylacetonate (Zn(C5H7O2)2),
zinc chloride (ZnCl2), and other (Figure 36). The following were used sporadically as the
“Zn2+” zinc cation precursor in the microwave solvothermal synthesis: ZnO [775,816,819,822],
bis(acetylacetonato)zinc [789], bis(methylacetato)zinc [789], bis(dimethylmalonato)zinc [789].
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The popularity of zinc acetate (68.7%) results mainly from its availability and solubility in most
organic solvents.
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573,758–838].

The most popular reactants being hydroxide anion precursor chemicals “OH−” used for the
ZnO synthesis according to the data collected from the literature review [758–838] (Tables 10–12)
(Figure 37) are sodium hydroxide (NaOH), ammonia water (NH3·H2O, NH4(OH)), as well as amides
and amines, e.g., C2H8N2 [775], hexamethylene tetramine (C6H12N4) [786], triethanolamine (TEA,
C6H15NO3) [786], diethanolamine ((CH2CH2OH)2NH) [791], thioacetamide (C2H5NS) [819]. In over
a half of publications, no hydroxide anion precursor chemical “OH−” was used, because the “OH−”
anion was formed during the synthesis as a result of a reaction of a Zn2+ salt with a solvent, forming
basic salts [402].
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4.2. Surfactants

As mentioned before, surfactants are commonly used in nanotechnology for passivation of surface,
control of shape, and giving of photophysical properties [740]. The following surfactants were used in
microwave solvothermal syntheses of ZnO NMs for the purpose of controlling the morphology:

- Polyvinyl alcohol (PVA) for obtaining nanoflakes [779].
- Polyethylene glycol 400 (PEG-400) for obtaining nanorods [779].
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- Polyvinylpyrrolidone (PVP) for obtaining flowers with rod-like petals [779] and nanorods [825,
827–830].

- Cetyltrimethylammonium-bromide (CTAB) for obtaining flowers with rod-like petals [779],
nanorods [827,830] and chrysanthemum-like prismatic nanorods [838].

- Polyethylene glycol for obtaining NPs [232].
- Methylimidazole for obtaining uniform particles with approximately rhombic dodecahedron

facets [832].
- Triton X100 for obtaining nanorods [827,830].

4.3. Morphology

Morphologies of ZnO reported in the literature are presented in the description of properties
in Tables 10–12 [758–838]. ZnO nanomaterials and micromaterials synthesised with the use of the
microwave solvothermal synthesis had the following shapes: butterfly-like [765], cables [819], core-shell
structures [816], hexagonal prisms [765], hierarchical architectures constructed by nanoparticles [806],
mulberry-like structures [786], needle-like [785], peanut-like structures [765], pyramids [807],
rice-like particles [777,787], spheroidal nanostructures [784], sword-like wires [765], tubes [770],
wires [783,792], sheet-like structures [785], spheres [765,791], flower-like structures [573,775,779,785–787,
794,838], rod-like shape structures [402,705,764,767,770,771,778,780,785,788,797,805,813,822,825–830],
and spherical-like shape structures [181,402,758–764,766,769,772–774,776,778,780,789,790,793,795,796,
798–804,808–812,814,818,823–831,833–837,864].

Examples of various morphologies of ZnO obtained by the microwave solvothermal method are
presented in Figures 38–42. Changes in the colours of suspensions of doped ZnO NMs caused by the
type and quantity of dopant are reflected in Figures 43–46, while Figure 47 shows a change in the
colour of ZnO NPs colloid caused by the use of various sizes of NPs.
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Figure 38. Examples of various ZnO structures obtained by the microwave solvothermal synthesis:
(a) TEM image of ZnO nanorods (Reprinted from [778], Copyright ©2012 Khoza et al., Article
licensed under a CC BY 3.0, https://creativecommons.org/licenses/by/3.0/); (b) TEM image of ZnO
stars (Reprinted from [778], Copyright ©2012 Khoza et al., Article licensed under a CC BY 3.0,
https://creativecommons.org/licenses/by/3.0/); (c,d) TEM images of ZnO nanoparticles (Reprinted
with permission from [789], ©The Royal Society of Chemistry, Article licensed under a CC BY 3.0,
https://creativecommons.org/licenses/by/3.0/); (e,f) SEM images of Ag/ZnO rods (Reprinted with
permission from [838], Copyright ©2018 Xin et al., Article licensed under a CC BY-NC 3.0, https:
//creativecommons.org/licenses/by-nc/3.0/); (g,h) SEM and TEM images of nanorods agglomerated as
urchin-like structures (Reprinted with permission from [797], Copyright©2019 de Pereset et al., Article
licensed under a CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).
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Figure 40. (a,b) Low- and high-magnification SEM images of the straw-bundle-like ZnO, (c,d) low-and
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Figure 42. (a) SEM image of ZnO tubes (Reprinted from [868], Copyright (2005), with permission
from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]); (b,c) SEM images of spherical
Gd doped ZnO particles (own test results); (d–f) TEM images of Au-ZnO nanopyramids (Reprinted
(adapted) with permission from [807]. Copyright © 2011, American Chemical Society). (a,d–f) All
rights reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 47. Photograph of oleate-stabilised ZnO NPs, dispersed in cyclohexane, under UV light
(λ = 365 nm) in order of increasing synthesis temperature of 125 ◦C (2.6 nm), 150 ◦C (2.7 nm), 175 ◦C
(3.1 nm), and 200 ◦C (3.8 nm) (left to right). Reprinted (adapted) with permission from [795]. Copyright
© 2019, American Chemical Society. All rights reserved. In order to re-use permission must be obtained
from the rightsholder.

4.4. Microwave Solvothermal Synthesis of ZnO without Any Additional Heat Treatment

One of the main advantages of the solvothermal technology is the possibility to use mixtures of
precursors in the form of solutions rather than sedimenting suspensions of hydroxides, as is the case
in the majority of hydrothermal syntheses of ZnO in water. Thanks to that, numerous problems are
avoided, above all with heterogeneity and unrepeatability of the precursor (suspension sedimentation)
and the lack of stirring of the precursor suspension in the reactor, which critically affects the quality
and homogeneity of the obtained products. The application of non-aqueous solutions or those with
a limited water content eliminates the presence of competitive mechanisms during the ZnO NPs
synthesis, which lead to formation of heterogeneous products, with varying morphology and chemical
composition. Among various synthesis routes, the solvothermal method is noted as attractive for its
simplicity and the possibility to have a better control of the reaction mechanism and the better rate of
particle growth [402,753–757].

The microwave solvothermal synthesis enables also a ZnO NMs synthesis from a suspension,
which consists in obtaining a suspension of a Zn2+ salt in an organic solvent with an addition of a
substance precipitating the hydroxide anion precursor chemical “OH−”, e.g., NaOH.

4.5. Microwave Solvothermal Synthesis of ZnO from a Solution

During our research on the microwave solvothermal synthesis we noticed that by changing the
water content in the solution obtained by dissolving zinc acetate in ethylene glycol it is possible to
control the size of ZnO NPs precisely within the range from ca. 15 nm to 120 nm [758]. Figure 48
presents an example size distribution of ZnO NPs crystallites obtained from precursor solutions
with varying H2O contents. All microwave solvothermal syntheses were carried out with the same
parameters (25 min, 230 ◦C). Due to the lack of access to research enabling us to analyse by-products,
we proposed a general equation of the reaction (33) of ZnO NPs in ethylene glycol:

Zn(CH3COO)2·2H2O
C2H4(OH)2, H2O, MH (T, P)
−−−−−−−−−−−−−−−−−−−−−−−→ZnO↓+ other products (liquid or gas) (33)

We proved that by determining an experimental correlation between the average size of ZnO NPs
and the water content in the precursor, a calibration curve of the ZnO NPs size is obtained, based on
which particle size can be controlled. Of course, each calibration curve of ZnO NPs size refers to a
specific lot of reactants for which it was determined. Each time, when changing the lot of reactants,
the calibration curve of ZnO NPs size must be determined again to preserve the precision of particle
size control.
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Figure 48. Crystallite size distribution of ZnO NPs obtained in the microwave solvothermal
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licenses/by/4.0/.

Thorough research on the microwave solvothermal synthesis of ZnO NPs obtained from a
precursor solution, zinc acetate dissolved in ethylene glycol with an addition of heavy water, allowed
us to explain and verify the synthesis mechanism [402]. It was crucial for our experiment to track and
learn the fate of water at various stages of the synthesis. Owing to the results of XRD tests of ZnO
NPs synthesis products for different durations (Figure 49) and the elemental analysis, we managed to
determine that the solid intermediate of the solvothermal synthesis of ZnO was lamellar hydroxy-zinc
acetate (LHZA, Zn5(OH)8(CH3COO)2·2H2O) with the lamellar structure (Figure 50a). Based on the
results of the gas chromatography with mass spectrometry and Fourier transform infrared spectroscopy
we proved that the liquid by-products were esters, mainly ethanediol monoacetate (HOC2H4OOCH3),
and small quantities of ethanediol diacetate (C2H4(OOCH3)2). Thanks to the water content analysis by
the Karl Fischer method, we determined that also water was one of the liquid by-products.
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Figure 50. SEM images of ZnO NPs synthesis products obtained from the 4% H2O precursor,
for synthesis durations of (a) 6 min; (b) 7.5 min; (c) 10 min; (d) 15 min; (e) 20 min; (f) 25 min,
respectively. Republished with permission of ©IOP Publishing Ltd from [402], Copyright (2018),
permission conveyed through Copyright Clearance Center, INC. All rights reserved. In order to re-use
permission must be obtained from the rightsholder.

Learning all the primary products of the solvothermal synthesis of ZnO allowed us to write a
general equation of the reaction (34):

Zn(CH3COO)2 + 2C2H4(OH)2
C2H4(OH)2, H2O, MH (T, P)
−−−−−−−−−−−−−−−−−−−−−−−→ZnO ↓ +H2O + (2−m)HOC2H4OOCH3 + mC2H4(OOCH3)2 (34)

The above equation may be expressed in a more general way (35):

Zn(CH3COO)2 + alcohol
(T, P)
−−−−−→ZnO ↓ +esters + H2O (35)

An identical general equation of the reaction (35) was proposed by Du te al. [394], Tonto et al. [396],
Šarić et al. [398], Zhao et al. [780], Yiamsawas et al. [840], and Yuan et al. [841], while the results
achieved in the papers by Bilecka et al. [762], Bhatte et al. [769,776], and Demir [842] permit deriving a
general equation independently (35). The results in the paper by Gotic et al. [843], which describes
the solvothermal synthesis of Fe3O4 (hematite), and the results in the paper by Bilecka et al. [763],
which describes the solvothermal synthesis of CoO, ZnO, Fe3O4, MnO and Mn3O4, permit deriving a
general equation of the reaction (36) of synthesis of metal oxide (MxOz) NPs from a salt of a metal
acetate (M(CH3COO)x) dissolved in an alcohol.

M(CH3COO)x + alcohol
(T, P)
−−−−−→MyOz + esters + H2O (36)

Learning the fate of heavy water allowed us to explain the mechanism of ZnO NPs size control in
the microwave solvothermal synthesis, which we described in detail in our paper [402]. The mechanism
of size control of ZnO NPs obtained by the microwave solvothermal synthesis may be divided into 4
stages (Republished with permission of©IOP Publishing from [402], Copyright (2018), permission
conveyed through Copyright Clearance Center, INC. All rights reserved.):

(1) Dissolution of zinc acetate in ethylene glycol (37,38), preparation of the precursor with a specified
H2O content (39)–(41):

(CH3COO)2Zn·2H2O(solid)
70◦C, EG
−−−−−−−→(CH3COO)2Zn·2H2O(dissolved) (37)
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(CH3COO)2Zn·2H2O(solid) + 2C2H4(OH)2
70◦C, EG
−−−−−−−→(CH3COO)2Zn·2C2H4(OH)2(dissolved) + 2H2O (38)

(CH3COO)2Zn
H2O, EG
←−−−−−→(CH3COO) Zn+ + CH3COO− (39)

CH3COO− + H2O
H2O, EG
←−−−−−→CH3COOH + OH− (40)

(CH3COO)Zn+ + OH−
H2O, EG
←−−−−−→(CH3COO)(OH)Zn (41)

(2) Formation (42)–(45) and growth of the intermediate (46):

5(CH3COO)2Zn + 8C2H4(OH)2 + xH2O
T, P
−−−→Zn5(OH)8(CH3COO)2·xH2O(precipitation) + 8CH3COOC2H4OH (42)

or possibly e.g.,

5(CH3COO)2Zn·2C2H4(OH)2 + xH2O
T, P
−−−→Zn5(OH)8(CH3COO)2·xH2O(precipitation) + 8CH3COOC2H4OH + 2C2H4(OH)2 (43)

5(CH3COO)(OH)Zn + 3C2H4(OH)2 + xH2O
T, P
−−−→Zn5(OH)8(CH3COO)2·xH2O(precipitation) + 3CH3COOC2H4OH (44)

2(CH3COO)(OH)Zn + 3(CH3COO)2Zn + xH2O
T, P
−−−→Zn5(OH)8(CH3COO)2·xH2O(precipitation) + 6CH3COOC2H4OH (45)

Zn5(OH)8(CH3COO)2·xH2O + 5(CH3COO)2Zn + 8C2H4(OH)2 + xH2O
T, P
−−−→(1 + 1)Zn5(OH)8(CH3COO)2·

xH2O(growth) + 8CH3COOC2H4OH
(46)

nH2O comes from the simultaneous esterification reaction (47) or (48)

C2H4(OH) 2 + CH3COOH↔ CH3COOC2H4OH + H2O (47)

(CH3COO)2Zn·2C2H4(OH)2 + CH3COOH↔ (CH3COO)2Zn·C2H4(OH)2·H2O + CH3COOC2H4OH (48)

(3) Achievement of equilibrium constant of the ester hydrolysis reaction for Equation (49) and at the
same time of equilibrium constant of the esterification reaction (47) and decomposition of the
intermediate caused by temperature (50):

HOC2H4OOCH3 + H2O↔ C2H4(OH)2 + CH3COOH (49)

Zn5(OH)8(CH3COO)2·xH2O + 2C2H4(OH)2
T, P
−−−→ 5ZnO + 2CH3COOC2H4OH + 5H2O + xH2O (50)

(4) Growth of existing ZnO NPs (51,52), which is confirmed by the results in Figure 51:

ZnO + (CH3COO)2Zn + 2C2H4(OH)2
T, P
−−−→(1 + 1)ZnO(particle growth) + H2O + 2CH3COOC2H4OH (51)

ZnO + (CH3COO)(OH)Zn + C2H4(OH)2
T, P
−−−→(1 + 1)ZnO(particle growth) + H2O + CH3COOC2H4OH (52)

The general equation of the microwave solvothermal synthesis reaction of ZnO NPs in ethylene
glycol that takes into account obtaining only HOC2H4OOCH3 ester is as follows:

(CH3COO)2Zn + 2C2H4(OH)2
C2H4(OH)2, H2O, T, P
−−−−−−−−−−−−−−−−−−→ZnO + H2O + 2CH3COOC2H4OH (53)
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4% H2O content. Republished with permission of ©IOP Publishing from [402], Copyright (2018),
permission conveyed through Copyright Clearance Center, INC. All rights reserved. In order to re-use
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The detailed description of the above mechanism of the ZnO NPs synthesis, which is also presented
in Figure 52, is included in the paper [402]. For the purposes of this review, we present a general
description below:

1. As a result of hydrolysis of zinc acetate, water leads to the formation of acetic acid,
which participates in an esterification reaction with ethylene glycol during the microwave
solvothermal synthesis.

2. The products of the esterification reaction are esters and water. However, the course of the reaction
of obtaining and growth of the intermediate, Zn5(OH)8(CH3COO)2·xH2O, is possible only through
the co-existence of the esterification reaction. Only water forming in the esterification reaction
participates in reactions of obtaining/growth of the intermediate, Zn5(OH)8(CH3COO)2·xH2O.
Once the equilibrium constant of the esterification reaction is reached, the intermediate rapidly
decomposes into ZnO NPs, H2O and esters.

3. The control of particle size arising from a change in the water content in the precursor is a
consequence of the change in the quantity of formed crystalline nuclei of ZnO (NPs) relative to
the remaining unconverted quantity of substrate (zinc acetate). After the decomposition of the
intermediate into homogeneous nuclei of ZnO (NPs), no subsequent nuclei of ZnO (NPs) are
formed as a result of further reactions. The only process that might occur is the growth of the
existing nuclei of ZnO (NPs) until the still unreacted substrates are used up.

4. Water fulfils the function of a catalyst in the described ZnO NPs solvothermal synthesis
reaction. Water participates in the reaction with substrates and forms an unstable intermediate,
Zn5(OH)8(CH3COO)2·xH2O, which at the same time is a catalyst of the esterification reaction.
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We believe that generally each ZnO solvothermal synthesis based on a precursor obtained as a
result of dissolution of zinc acetate in an alcohol or a polyol will proceed according to the mechanism
described by us above [402]. In this solvothermal synthesis, the alcohol/polyol fulfils a double function:
the solvent of zinc acetate, and the reactant. Particular attention should be drawn to the fact that the
lack of control over the H2O content in organic solvents will be manifested in the lack of repeatability
of properties of the obtained ZnO NMs. It must be borne in mind that precursors obtained based on
organic solvents must be always closed tightly because they absorb moisture from air/environment.

Other authors considered a mechanism of ZnO synthesis from zinc acetate dissolved in an alcohol
but without analysing the solid intermediate, e.g., Bhatte et al. [769,776] suggest that Zn(OH)2 is the
intermediate of the discussed solvothermal reaction of ZnO synthesis.

4.6. Microwave Solvothermal Synthesis of ZnO from a Suspension

The microwave solvothermal synthesis of ZnO NMs has one major advantage: once the reactants
(Zn2+) have undergone a complete reaction, the further growth of ZnO NMs crystals through the
Ostwald ripening process is considerably limited by the presence of the organic solvent. ZnO solubility
in organic solvents is so low that it prevents recrystallisation. Of course, theoretically, the Ostwald
ripening process may not take place where:

- content of, mH2O = 0 wt%,
- water being formed is collected physically or bound chemically,
- other substances which may digest/dissolve ZnO are not formed.

A limited Ostwald ripening process in the solvothermal synthesis enables obtaining ZnO NPs with
the size below 10 nm (quantum dots), which is extremely rare in the case of hydrothermal syntheses.
ZnO quantum dots are NPs with the size ranging from 2 to 10 nm.

The paper by Kuo et al. [774] describes obtaining ZnO NPs from a precursor formed by precipitation
of Zn(CH3COO)2 dissolved in isopropanol, in an aqueous solution of NaOH. The authors [774] proposed
the following general equation of the reaction (54):

(CH3COO)2Zn + NaOH→ ZnO + H2O + 2Na(CH3COO) (54)

The product of their synthesis were spherical ZnO NPs with the average size of 3.5 nm.
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The paper by Saloga et al. [795] describes obtaining ZnO NPs through a multi-stage synthesis.
First, their prepared zinc oleate by mixing ZnCl2 with sodium oleate, which they rinsed with water
and dried. Next, dry zinc oleate was dissolved in tetrahydrofuran and then tetrabutylammonium
hydroxide was added to the solution. Thus obtained suspension was subjected to a microwave
synthesis lasting 5 min at the temperatures of 125 ◦C, 150 ◦C, 175 ◦C and 200 ◦C. Saloga et al. [795]
describe obtaining ZnO NPs with the average size of 2.6 nm (125 ◦C), 2.7 nm (150 ◦C), 3.1 nm (175 ◦C),
and 3.8 nm (200 ◦C).

Saoud et al. [705] obtained nanorods from a suspension of a precursor obtained by dissolving
Zn(NO3)2 in ethanol, subsequently adding such a quantity of the NaOH solution until the pH of the
obtained solution reached 10. The suspension was exposed to microwave irradiation for approximately
10–15 min and was removed upon onset of boiling. The synthesis product was nanorods with diameters
ranging from 10 to 20 nm (Figure 53).
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Figure 53. TEM micrographs of (a) as-prepared ZnO nanoparticles, (b) HRTEM micrograph showing
the lattice fringes in the ZnO nano-crystal with its SAED (selected area electron diffraction) pattern as
shown in (c). Inset in (a) shows that the prepared ZnO nanoparticle sample is mostly composed of small
nanorods with the diameter of 10–20 nm. Reprinted from [705], Copyright (2014), with permission
from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to
re-use permission must be obtained from the rightsholder.

Details of other research papers concerning the microwave solvothermal synthesis of ZnO without
any additional heat treatment are presented in Table 10.

Table 10. Summary of the microwave solvothermal synthesis of ZnO without any additional
heat treatment.

Substrates Conditions during Preparation Properties Ref.

Zn(CH3COO)2·2H2O, C2H4(OH)2
(solvent), H2O (different

concentrations)

T: 190–220 ◦C, duration: 25 min;
power: 100%; microwave reactor

(600 W)

control of size of particles within
the size range between circa 15

and 120 nm
[402,758]

Zn(CH3COO)2·2H2O, diethylene
glycol (solvent), triethylene glycol

(solvent), tetraethylene glycol
(solvent), H2O (constant

concentration)

T: 190 ◦C, duration: 25 min;
power: 100%; microwave reactor

(600 W)

spherical nanoparticles and
rod-like shape nanoparticles;

diameters: 32–47 nm
[402]

Zn(CH3COO)2·2H2O, C2H4(OH)2
(solvent), H2O (constant

concentration)

pressure: 4 bar; duration: 12
min; power: 1000–3000 W;

microwave reactor (3000 W)

nanoparticles (27 nm) aggregates
precise size-control ranging from

about 60 to 120 nm
[502]
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Table 10. Cont.

Substrates Conditions during Preparation Properties Ref.

Zn(CH3COO)2·2H2O (different
concentrations), diethylene glycol

(solvent)

T: 180 ◦C, duration: 5 min;
microwave reactor (300 W)

nanoparticles (6–10 nm) clusters
precise size-control ranging from

about 57 to 274 nm
[759]

Zn(CH3COO)2·2H2O (different
concentrations), oleic acid,
diethylene glycol (solvent)

T: 250 ◦C, duration: 15 min;
power: 100%; microwave reactor nanoparticles (4–14 nm) [760]

Zn(CH3COO)2·2H2O, C2H4(OH)2
(ethylene glycol - solvent), H2O

different irradiation cycling
modes, duration: 3–60 min;

power: 200–600 W; microwave
oven (750 W)

straw-bundle-like, wide
chrysanthemum-like,

nanorod-based microspheres,
microspheres (irregular),

nanorod-based microspheres,
mixture of straw-bundle-like,

wide chrysanthemum-like
oat-arista-like

[761]

Zn(CH3COO)2·2H2O,
C6H5CH2OH (anhydrous benzyl

alcohol, solvent)

T: 120–180 ◦C duration:
30 s–35 min; power: 300 W;

microwave reactor
nanoparticles (4–8 nm) [762]

Zn(CH3COO)2, Zn(C5H7O2)2,
C6H5CH2OH (benzyl alcohol,

solvent)

T: 120–180 ◦C duration:
30 s–35 min; power: 300 W;

microwave reactor

nanoparticles (20 nm for
Zn(C5H7O2)2; 25–30 nm for

Zn(CH3COO)2)
[763]

Zn(CH3COO)2·2H2O, C2H5OH
(solvent); C3H7OH (solvent), H2O

(solvent), NaOH

duration: 5 min; power: 150 W;
microwave oven

water (solvent): ZnO
nanoparticles had elliptical shape
and large size with size of larger
axis of about 100 nm and size of

the other axis of about 40 nm;
ethanol (solvent): rod

nanostructures form with length
of ~45 nm and radius of ~20 nm;
isopropanol (solvent): spherical

particles with radius of 10–12 nm.

[764]

Zn(CH3COO)2·2H2O, CH3OH
(solvent), N(CH2CH2OH)3,

NaOH, H2O

pH: 9.5; duration: 150 s;
microwave oven (900 W)

sword-like wires with diameters
of about 80–250 nm and the length

of ∼1–4 µm
[765]

Zn(C5H7O2)2·xH2O,
CH3OH+C6H13OH (1-hexanol)

(solvent)

T: 160 ◦C; duration: 1 h;
microwave reactor

spherical aggregates of NPs, SSA:
52 m2/g [766]

Zn(CH3COO)2·2H2O, C2H4(OH)2
(solvent), H2O (solvent), various

volume ratio H2O:C2H4(OH)2

T: 200 ◦C; duration; 30 min;
power: 1000 W; microwave

reactor

rods, hexagonal prisms,
peanut-like, butterfly-like, spheres [767]

Zn(CH3COO)2·2H2O, Na2CO3,
polyethylene glycol (PEG400)

(solvent)

duration: 10 min; microwave
oven (700 W)

nanorods, diameters: 10–25 nm,
length: 60–200 nm [768]

Zn(CH3COO)2·2H2O, C4H8(OH)2
(1,4- butanediol, solvent)

duration: 2 min with on–off
mode with a duration interval of

30 sec; power: 200 W;
microwave oven (800 W)

nanoparticles 59 ± 16 nm [769]

Zn(C5H7O2)2 (zinc
acetylacetonate), C2H5OH

(solvent), polyvinylpyrrolidone
(various concentrations)

duration: 15 min; power: 800 W;
microwave oven

irregularly shaped nanoparticles,
nanorods and nanotubes [770]

Zn(C5H7O2)2 (zinc
acetylacetonate), C2H5OH + H2O

(solvent),
cetyltrimethylammonium

bromide (CTAB)

duration: 15 min; power: 100 W;
microwave reactor

nanorods coatings deposited on
Cr/Si, Al/Si, Au/Si, ITO/glass;

nanorod (length > 1 µm, width
~140–180 nm)

[771]
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Table 10. Cont.

Substrates Conditions during Preparation Properties Ref.

Zn(C5H7O2)2·H2O (zinc
acetylacetonate monohydrate),

alkoxyethanol (solvent),
methoxyethanol (solvent),
ethoxyethanol (solvent),

n-butoxyethanol (solvent),

duration: 4 min; power: 800 W;
microwave oven

SSA: 10–70 m2/g, nanoparticles
30–200 nm

[772]

Zn(C5H7O2)2·xH2O (zinc
acetylacetonate hydrate, various

concentrations), C4H9OH
(1-butanol, solvent)

T: 120 ◦C; duration: 30 min;
power: 250 W; pulsed

microwave irradiation in
microwave reactor

spherical-shaped (diameter
10–60 nm) and rod-shaped
structures (length 100 nm)

[773]

Zn(CH3COO)2·2H2O, NaOH,
(CH3)2CHOH (isopropanol,

solvent)

duration: 5 min; power: 150 W;
microwave reactor spherical nanoparticles (3–5 nm) [774]

commercial ZnO was dissolved in
5 M NaOH, C2H8N2, C2H5OH

(solvent)

T: 150 ◦C; duration: 30 min;
microwave reactor

flower-like microstructures,
rod-like microstructures (length:

5 µm, diameter: 1 µm)
[775]

Zn(CH3COO)2·2H2O, C3H6(OH)2
(1,3-propanediol, solvent)

duration: 3 min with on–off
mode having duration interval

of 30 s; power: 360 W;
microwave oven (800 W)

nanoparticles, diameter: 10–50 nm [776]

Zn(CH3COO)2·2H2O,
N(CH2CH2OH)3), CH3OH

(solvent), H2O (solvent), NaOH

pH: 10.6–11.0; duration:
120–180 s; microwave oven

(900 W)

uniform flower-like ZnO
nanostructures (water), lengths:
700–950 nm, width: 130–230 nm;
spheres (methanol): 250–400 nm

[573]

Zn(CH3COO)2·2H2O,
N(CH2CH2OH)3, NaOH,

C4H9OH (butanol, solvent)

pH: 8–10; T: 110 ◦C; duration:
40–60 s; microwave oven

(900 W)

aggregated particles, average
diameters: 550 nm; semi-spherical

particles along with rice-like
particles, average diameters

~600 nm; nanospheres average
diameter 250 nm

[777]

Zn(NO3)2·6H2O,
CH3(CH2)15NH2

(hexadecylamine), NaOH,
C2H5OH (solvent), C3H6O

(acetone, solvent), H2O (solvent)

T: 120 ◦C; duration: 15 min;
microwave reactor

ethanol: spherical particles
(20–60 nm) and rods with aspect

ratio of 8–60;
acetone: spherical particles

(45–100 nm) and rods with aspect
ratio which ranges from 37 to 94.
water: star-shaped nanoparticles

[778]

Zn(C5H7O2)2·xH2O (zinc
acetylacetonate hydrate),

ethylenediamine (solvent), water
(solvent), polyvinyl alcohol (PVA),
polyethylene glycol 400 (PEG-400),

polyvinylpyrrolidone (PVP),
cetyltrimethylammonium

bromide (CTAB)

T: 100–110 ◦C; duration: 10 min,
microwave oven

ethylenediamine: flower with
rod-like petals, nanorod,

nanoflake, flower with rod-like
petals, flower with rod-like petals;

water: flower cluster with
spindle-like petals

[779]

Zn(CH3COO)2·2H2O, C2H5OH
(anhydrous solvent),

C6H5CH2OH (benzyl alcohol,
solvent), H2O (solvent)

T: 200 ◦C; duration: 5–30 min;
microwave reactor

SSA: 32–34 m2/g;
ethanol: nanoparticles (~20 nm),

hollow spheres consisting of
nanoparticles (20–30 nm) ranging
from 200 to 700 nm in diameter;
benzyl alcohol: nanoparticles

(10–80 nm)
water: nanorods, length: 1–2 µm

[780]

Zn(CH3COO)2·2H2O, NaOH,
C2H5OH (solvent)

T: 60 ◦C; duration: 5–6 min;
microwave oven spherical nanoparticles (4–8 nm) [781,782]

Zn(CH3COO)2·2H2O,
(CH3)2CHOH (isopropanol,

solvent)

duration: 180 s; power: 140 W;
microwave oven nanowires [783]
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Table 10. Cont.

Substrates Conditions during Preparation Properties Ref.

Zn(CH3COO)2·2H2O,
(CH3)2CHOH (isopropanol) + H2O

(solvent, various concentrations)

duration: 1–3 min; microwave
oven (1450 W) spheroidal nanostructures [784]

Zn(NO3)2·6H2O, NaOH (different
concentrations), sodium dodecyl
sulfate (SDS), C2H5OH + H2O

(solvent)

T: 80–180 ◦C duration: 5–60 min;
microwave reactor

rod-like, sheet-like, needle-like
and flower-like nanostructures [785]

Zn(NO3)2·6H2O, NaOH, C2H5OH +
H2O (solvent), hexamethylene

tetramine (C6H12N4),
triethanolamine ((TEA, C6H15NO3,

various concentrations)

T: 180 ◦C duration: 15 min;
microwave reactor (600 W)

mulberry-like structures (~150 nm)
was constructed by many

nanoparticles (~5 nm); flower-like
structures; hexagonal structure

[786]

Zn(CH3COO)2·2H2O,
Zn(NO3)2·6H2O, zinc metal powder,

NaOH, NH4(OH), C2H5OH
(solvent), C2H4(OH)2 (solvent)

pH: 10–14; duration: 5–10 min:
power: 300–900 W: reactor

microwave

marigold-flower like, multipod
jasmine- flower like,

urchin-rod-flower like,
calendula-flower like and

rice-grain-shape like

[787]

Zn(CH3COO)2·2H2O, NaOH, H2O
(solvent), C2H4(OH)2 (solvent),

2-ethoxyethanol (solvent), Triton
X-100

duration: 3 min; power: 300 W;
reactor microwave

nanorods with a pencil-like tip,
nanorods with hexagonal flat tops,

flower-like nanostructures
[788]

bis(acetylacetonato)zinc
monohydrate,

bis(methylacetato)zinc,
bis(dimethylmalonato)zinc, C2H3N

(acetonitrile, solvent)

T: 160–220 ◦C; duration: 30 min;
power: 300 W; microwave

reactor
spherical nanoparticles (3–16 nm) [789]

Zn(CH3COO)2·2H2O, NaOH,
C2H5OH (solvent), H2O

T: 90 ◦C; duration: 20 min;
microwave reactor spherical nanoparticles (20–25 nm) [790]

Zn(CH3COO)2·2H2O,
(CH3)2CHOH (isopropanol,
solvent), (CH2CH2OH)2NH

(diethanolamine)

T: 150–200 ◦C; microwave
reactor nanospheres [791]

Zn(CH3COO)2·2H2O, C4H9NO
(N,N-dimethylacetamide, DMAc,

solvent), H2O

duration: 1.5–6 min; microwave
oven (800 W)

particles (300–510 nm) and
nanowires [792]

Zn(CH3COO)2·2H2O, oleic acid,
diethylene glycol (solvent)

T: 220–230 ◦C; duration:
10–15 min; microwave reactor nanoparticles; diameters: 5–9 nm [793]

Zn(NO3)2·6H2O, CO(NH2)2, H2O,
C2H4(OH)2 (ethylene glycol,

solvent)

T: 150 ◦C; duration: 15 min;
microwave reactor (850 W) flowers [794]

ZnCl2·2H2O, sodium oleate,
tetrabutylammonium hydroxide,

tetrahydrofuran (C4H8O, THF,
solvent)

T: 125–200 ◦C; duration: 5 min;
microwave reactor

spherical nanoparticles, size:
2.6–3.8 nm [795]

Zn(CH3COO)2·2H2O, Na2CO3,
polyvinyl alcohol (PVA),

polyethylene glycol (PEG),
diethylene glycol (DEG, solvent),

duration: 1.5–5 min; microwave
oven (1150 W) nanoparticles, SSA: 35–86 m2/g [796]

Zn(NO3)2·6H2O, NaOH,
polyethylene glycol, C2H5OH

(solvent)

T: 140 ◦C; duration: 10 min;
microwave oven

rods, diameter: 0.167 ± 0.05 µm,
length: 1.63 ± 0.33 µm [797]

Zn(NO3)2·6H2O, NaOH, C2H5OH
(solvent)

duration: 10–15 min; power 33%;
microwave reactor (800 W) nanorods, diameters: 10–20 nm [705]

4.7. Types of ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Solvothermal Synthesis

The microwave solvothermal synthesis enables obtaining:
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- ZnO doped with the following ions: Al3+ [811,814,815], Co2+ [232,798–801,808–810,812,833–835],
Cr3+ [232,809], Fe2+ [232,810,836], Ga3+ [815], In3+ [811], Mg2+ [817], Mn2+ [232,802,804,809,810,
812,837], Ni2+ [232,809,810,813] and V5+ [810].

- ZnO co-doped with the following ions: Co2+–Mn2+ [803] and Al3+–Ga3+ [815].
- ZnO composites or ZnO hybrid structures: Ag–ZnO [181,805,806,838], Au–ZnO [807],

Fe3O4@SiO2/ZnO [818], coaxial ZnO/C/CdS nanocables [819], ZnO/reduced graphene oxide [819,
821], Ag/ZnO/reduced graphene oxide [821], and carbon-coated ZnO nanorods [822].

4.8. ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Microwave Solvothermal Synthesis
without Any Additional Heat Treatment

One of the main advantages of the solvothermal synthesis of doped ZnO is the multifunctionality
of the organic solvent, which may fulfil the function of a reactant, a dopant stabilising agent, limit the
uncontrolled growth of particles, and enables a precise control of the particle size.

Our research [798,799,801] proves that the solvothermal synthesis, through selection of appropriate
reactants (Zn(CH3COO)2·2H2O, Co(CH3COO)2·4H2O, C2H4(OH)2), enables obtaining Co doped ZnO
with the nominal content of Co2+ ions being at least 15 mol% in the form of a single-phase material
(without foreign phase inclusions). We used ethylene glycol, which has slightly reducing properties,
which enabled stabilisation of the oxidation state of the Co2+ dopant during the synthesis. Co doped
ZnO obtained by us displayed paramagnetic properties with a contribution of antiferromagnetic
coupling of Co–Co pairs [798]. We also confirmed that the method, which we discovered, of ZnO
particle size control in the microwave solvothermal synthesis [402,758] permitted also control of Co
doped ZnO particle size within the size range of 20–53 nm.

Bhattacharyya et al. [805] and Wang et al. [806] described obtaining an Ag–ZnO composite with
the use of a mixture containing identical components: (Zn(CH3COO)2·2H2O, AgNO3, C2H4(OH)2

(solvent), H2O and C2H4(OH)2 (solvent)). Bhattacharyya et al. [805] carried out 15-min syntheses in a
domestic microwave oven modified with a refluxing system, while Wang et al. [806] carried out 30-min
syntheses at the temperature of 170 ◦C in a microwave reactor. Bhattacharyya et al. [805] obtained an
Ag–ZnO composite depending on the Ag content (Ag:ZnO molar ratio of 0.02, 0.05, 0.15, and 0.22)
with the nanodisk and nanorod shape (Figure 54), where Ag NPs sized 3.5 nm were inserted into the
pores of ZnO. Wang et al. [806], in turn, obtained an Ag–ZnO composite composed of microspheres
(Figure 55), where the increase in the content of Ag NPs with the diameter below 5 nm from 0.5 mol%
to 3 mol% resulted in a decrease in the size of irregular semi-circular microspheres.
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Figure 54. SEM images of (a) Ag:ZnO molar ratio of 0, (b) Ag:ZnO molar ratio of 0.02, (c) Ag:ZnO
molar ratio of 0.05, (d,e) Ag:ZnO molar ratio of 0.13, (f) Ag:ZnO molar ratio of 0.22. Reprinted (adapted)
with permission from [805]. Copyright (2008) American Chemical Society. All rights reserved. In order
to re-use permission must be obtained from the rightsholder.
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Figure 55. SEM images of ZnO: (A) pure, (B) 0.5% Ag, (C) 1.0% Ag and (D) 3.0% Ag. Reprinted
from [806], Copyright (2012), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT
OWNER]. All rights reserved. In order to re-use permission must be obtained from the rightsholder.

One of the most interesting papers is the one by Liu et al. [820], which describes obtaining reduced
graphene oxide sheets covered with ZnO NPs. As the synthesis precursor, zinc acetate dissolved in
diethylene glycol with the addition of reduced graphene oxide sheets was used. Synthesis reactions
lasting 10 min were carried out in a microwave refluxing system. Products prepared with different
amounts of zinc acetate 0.0023, 0.0046, 0.0069, 0.0092, and 0.0115 M. By changing the zinc acetate
concentration, the authors controlled the degree of coverage of the reduced graphene oxide sheets
surface, which is presented in Figures 56 and 57. The authors [820] successfully obtained the ZnO NPs
(10–14 nm) content in ZnO/reduced graphene oxide samples from 11.55 wt% to 26.89 wt%.
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Figure 56. SEM images of as-prepared (a) reduced graphene oxide (rGO) sheets and rGO/ZnO
nanohybrids obtained with different concentrations of Zn2+: (b) 0.0023 M, (c) 0.0046 M, (d) 0.0069 M,
(e) 0.0092 M, and (f) 0.0115 M. Reprinted from [820], Copyright (2012), with permission from Elsevier
[OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission
must be obtained from the rightsholder.
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Figure 57. TEM images of as-prepared rGO/ZnO nanohybrids obtained with different concentrations
of Zn2+: (a) 0.0023 M, (b) 0.0069 M and (c) 0.0115 M, (d) EDS pattern of the rGO/ZnO nanohybrids.
Reprinted from [820], Copyright (2012), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER]. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.

Details of other research papers concerning the ZnO nanocomposites or ZnO hybrid nanostructures
obtained by the solvothermal synthesis without any additional heat treatment are presented in Table 11.

Table 11. Summary of the microwave solvothermal synthesis of ZnO nanocomposites or ZnO hybrid
nanostructures without any additional heat treatment.

Type of
Composite Substrates Conditions during

Preparation Properties Ref.

Co doped ZnO
Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O,
C2H4(OH)2 (solvent)

T: 220 ◦C, duration:
25 min; power:

100%; microwave
reactor (600 W)

Zn1−xCoxO (x = 0, 0.01, 0.05,
0.10 and 0.15);

spherical nanoparticles: SSA:
37–39 m2/g, diameter: 30–32 nm,

paramagnetic behaviour

[798,799]

Co doped ZnO

Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O,

C2H4(OH)2 (solvent), H2O
(different concentrations)

T: 190 ◦C, duration:
25 min; power:

100%; microwave
reactor (600 W)

Zn0.90Co0.10O, control of size of
particles within the size range
between circa 20 and 53 nm,

SSA: 43–21 m2/g

[800]

Co doped ZnO

Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O,

oleic acid, (HOC2H4)2O
(diethylene glycol, DEG,

solvent)

T: 250 ◦C, duration:
15 min; power:

100%; microwave
reactor

Zn1−xCoxO (x = 0, 0.01, 0.05,
0.10), spherical nanoparticles:

diameter: 5–40 nm
[801]

Mn doped ZnO
Zn(CH3COO)2·2H2O,
Mn(CH3COO)2·4H2O,
C2H4(OH)2 (solvent)

T: 200 ◦C, duration:
25 min; power:

100%; microwave
reactor (600 W)

Zn1−xMnxO (x = 0, 0.01, 0.05,
0.10 0.15, 0.20, 0.25); spherical

nanoparticles, diameter:
19–30 nm, SSA: 40–63 m2/g

[802]

Co-Mn co-doped
ZnO

Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O
Mn(CH3COO)2·4H2O,
C2H4(OH)2 (solvent)

T: 190 ◦C, duration:
25 min; power:

100%; microwave
reactor (600 W)

Zn(1−x−y)MnxCoyO NPs was x =
y = 0.00, 0.01, 0.05, 0.10, 0.15 (the
amount of both ions was equal),

spherical nanoparticles,
diameter: 19–30 nm, SSA:

40–56 m2/g, paramagnetic and
ferromagnetic behaviour

[803]

M doped ZnO (M =
Co, Cr, Fe, Mn, Ni)

Zn(NO3)2·6H2O,
Co(NO3)2·6H2O,
Cr(NO3)3·9H2O,
Cr(NO3)3·9H2O,
Mn(NO3)2·4H2O,

Ni(NO3)2·6H2O, NaOH,
C2H5(OH) (solvent),
polyethylene glycol

MW ≈ 2000

T: 280 ◦C; pressure:
20 bar; microwave

reactor (300 W)

nanoparticles, paramagnetic
behaviour [232]
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Table 11. Cont.

Type of
Composite Substrates Conditions during

Preparation Properties Ref.

Mn doped ZnO
Zn(CH3COO)2·2H2O,
Mn(CH3COO)2·4H2O,
C2H4(OH)2 (solvent)

duration: 30 s
cycles (on for 10 s,
off for 20 s) for 10
min; power: 33%;

microwave reactor
(650 W)

Zn1−xMnxO (x = 0, 0.05, 0.10,
0.20), nanoparticles [804]

Ag-ZnO
Zn(CH3COO)2·2H2O,

Ag(CH3COO),
C2H4(OH)2 (solvent)

duration: 12 min;
power: 1 kW (33%);
microwave reactor

(3 kW)

ZnO spherical nanoparticles
(30–35 nm);

Ag spherical nanoparticles
(35–39 nm)

[181]

Ag-ZnO
Zn(CH3COO)2·2H2O,
AgNO3, C2H4(OH)2

(solvent), H2O

duration: 30 s
cycles (on for 21 s,
off for 9 s) for 10

min; power: 900 W;
microwave oven

spherical nanoparticles
(13–30 nm); hexagonal disks

(14–165 nm);
nanorods diameter: 104 nm,

aspect ratio of 2.8;
3.5 nm Ag particles were

inserted into the pores of ZnO;
SSA: 25–51 m2/g

[805]

Ag-ZnO
Zn(CH3COO)2·2H2O,
AgNO3, C2H4(OH)2

(solvent), H2O

T: 170 ◦C; duration:
30 min; microwave

oven

hierarchical architectures
constructed by nanoparticles

(50 nm)
[806]

Au-ZnO
Zn(CH3COO)2, HAuCl4,
oleic acid + oleylamine

(solvent)

duration:
10 s–15 min; power:

100–1000 W;
microwave oven

nanopyramids, height:
100–130 nm, diameter of the
hexagonal basal plane of the

final Au-ZnO nanopyramid is
about 50–60 nm

[807]

Co doped ZnO
Zn(CH3COO)2·2H2O,
Co(CH3COO)2·2H2O,
C2H4(OH)2 (solvent)

T: 280 ◦C; pressure:
20 bar; duration

20 min; microwave
reactor (300 W)

Zn1−xCoxO (x = 0, 0.001, 0.01;
0.05, 0.10, 0.15), nanoparticles [808]

M doped ZnO (M
= Mn, Ni, Co, Cr)

Zn(CH3COO)2·2H2O,
Mn(CH3COO)2·4H2O,
Ni(CH3COO)2·4H2O,
Co(CH3COO)2·2H2O,

Cr(CH3COO)3,
C2H4(OH)2 (solvent)

T: 280 ◦C; pressure:
20 bar; duration

40 min; microwave
reactor (300 W)

Zn1−xMxO (x = 0, 0.05, 0.10,
0.15), nanoparticles (20–30 nm) [809]

M doped ZnO (M =
V, Co, Fe, Ni, Mn)

Zn(CH3COO)2,
Co(CH3COO)2,
Fe(CH3COO)2,

Ni(CH3COO)2·4H2O,
Mn(CH3COO)2,

C6H5CH2OH (benzyl
alcohol, solvent)

T: 160 ◦C; duration:
3 min; microwave

reactor

Zn1−xMxO (x = 0–0.3),
nanoparticles (10–20 nm), Fe
doped samples showed room
temperature ferromagnetism

[810]

In doped ZnO,
Al doped ZnO

Zn(CH3COO)2·2H2O,
InCl3·4H2O, AlCl3·6H2O,

diethylene glycol (solvent),
H2O

T: 200 ◦C; duration
30 min; laboratory
microwave oven

(1200 W),
1 h at 400 ◦C in
H2/N2 = 10/90%

nanoparticles (10–15 nm) [811]

Co doped ZnO,
Mn doped ZnO

Zn(NO3)2, Co(NO3)2,
Mn(NO3)2, NaOH,

C2H5(OH) (solvent), H2O

pH: 12; duration
5 min; power:

150 W; microwave
oven

concentration of the dopant was
5%; spherical nanoparticles
(10–15 nm), paramagnetic

[812]

Ni doped ZnO

Zn(CH3COO)2·2H2O,
Ni(CH3COO)2·2H2O,

NaOH,
polyvinylpyrrolidone,

(CH3)2CHOH
(isopropanol, solvent)

duration 5 min;
power: 150 W;

microwave oven

ZnO:Ni nanorods with diameter:
8–10 nm and length: 35-45 nm [813]
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Type of
Composite Substrates Conditions during

Preparation Properties Ref.

Al doped ZnO
Zn(CH3COO)2·2H2O,

Al(NO3)3, NaOH,
C2H5(OH) (solvent)

T: 80 ◦C; duration
60 min; power:

400 W; microwave
oven

Al doping levels: 0, 1.0, 2.0, 3.0,
4.0 at%;

spherical-like structures,
crystallite size: 11–15 nm

[814]

Al. doped ZnO,
Ga doped ZnO,

Al, Ga co-doped
ZnO

Zn(CH3COO)2·2H2O,
Al(NO3)3·9H2O,
Ga(NO3)3·xH2O,

diethylene glycol (solvent),
H2O

T: 200 ◦C; duration
30 min; microwave

reactor (1500 W)

Al and Ga dopant levels were
from 0.5 to 2.5 at%; doped and
co-doped powders exhibited a

broad size distribution with
particles around 100–200 nm

[815]

Al2O3 coated ZnO

ZnO NPs (diameter:
12–25 nm, 38.4 m2/g),

aluminium
triisopropoxide

(Al(O-i-Pr)3), NH4OH,
C2H5(OH) (solvent)

pH: 12; T: 70 ◦C;
duration 5 min;

microwave reactor
(500 W)

core-shell structures [816]

Mg doped ZnO

Zn(NO3)2·6H2O,
Mg(NO3)2·6H2O,
CO(NH2)2, urea,

C2H4(OH)2 (solvent), H2O

T: 130 ◦C; duration
4 h; power:
150–200 W;

microwave reactor

Zn1−xMgxO (x = 0, 0.2, 0.4, 0.6,
0.8), nano- and sub-micron

particle size
[817]

Fe3O4@SiO2/ZnO

Fe3O4@SiO2 (different
quantities),

Zn(CH3COO)2·2H2O,
diethylene glycol (DEG,

solvent)

T: 160 ◦C; duration
15–60 h;

mechanical stirring

Fe3O4 content: 10–30 wt%;
spherical shape, size 250–850 nm [818]

coaxial ZnO/C/CdS
nanocables

ZnO/C core-shell
nanocables (80 nm in

diameter and a range of
0.5–2 mm in length),

CdCl2·2H2O, C2H5(OH)
(solvent), thioacetamide

duration 10 min;
power: 280 W;

microwave
refluxing system

CdS nanoparticles (5.5 nm)
uniformly deposited on the

surface of nanocables
[819]

ZnO/reduced
graphene oxide

graphite (modified
Hummers method and

Fan’s method),
Zn(CH3COO)2·2H2O

(various concentrations),
diethylene glycol (solvent)

duration 10 min;
power: 300 W;

microwave
refluxing system

ZnO nanocrystals (10–14 nm)
anchored onto reduced
graphene oxide sheets

[820]

ZnO/reduced
graphene oxide,

Ag/ZnO/reduced
graphene oxide

graphite,
Zn(CH3COO)2·2H2O

(various concentrations),
AgNO3, NaOH,

C2H4(OH)2

duration: 4 cycles
(heated 1 min,

stirred for 3 min);
microwave oven

ZnO NPs and Ag NPs anchored
onto reduced graphene oxide

sheets
[821]

C/ZnO ZnO nanorods grafted by
glucose, glycerol

T: 100 ◦C; duration
30 min; microwave

reactor
carbon-coated ZnO nanorods [822]

4.9. ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Solvothermal Synthesis with
Additional Heat Treatment

One of the main purposes of additional heat treatment of microwave solvothermal synthesis
products, among others, undoped ZnO NMs in the solvothermal synthesis according to the
publication [823–831], was to remove unconverted reactants. A perfect example here is the cycle of
papers by Brahma et al. [825–830], which describe the growth of ZnO nanorods on an amorphous or
disordered surface (silica, glass and polymer substrates). Brahma et al. [825] used a mixture obtained
by mixing zinc acetylacetonate dissolved in ethanol with polyvinylpyrrolidone dissolved in water
for the synthesis. The obtained mixture together with the silica substrate immersed therein was
introduced for a duration between 20 s and 5 min (800 W) in a domestic-type microwave oven equipped
with a water-cooled condenser (reflux system) placed outside the microwave oven. After cooling
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the suspension, the substrates were removed, rinsed and dried. For the purposes of removing the
surfactant residue, the covered substrates were soaked (2–5 min) at 500 ◦C in the air atmosphere.
An example of the obtained morphology of the ZnO film grown on Si(100) is presented in Figure 58.
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Figure 58. (a,b) Plan view section SEM images of a thin film of ZnO nanorods, (c) cross-section image 

of ZnO nanorods, (preparation condition—800 W power, 5 min) and (d) plan view section SEM image 

of a ZnO nanoparticle thin film coating on Si(100), (preparation condition—800 W power, 20 s). 

Reprinted from [825], Copyright (2010), with permission from Elsevier [OR APPLICABLE SOCIETY 

Figure 58. (a,b) Plan view section SEM images of a thin film of ZnO nanorods, (c) cross-section image of
ZnO nanorods, (preparation condition—800 W power, 5 min) and (d) plan view section SEM image of
a ZnO nanoparticle thin film coating on Si(100), (preparation condition—800 W power, 20 s). Reprinted
from [825], Copyright (2010), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT
OWNER]. All rights reserved. In order to re-use permission must be obtained from the rightsholder.

In the case of a microwave solvothermal synthesis of doped ZnO, additional heat treatment
of samples may lead to an increase in the ZnO particle size (recrystallisation process), oxidation or
reduction of dopant ions and formation of foreign inclusions. The results of our research [798] show the
effect of soaking ZnO doped with Co2+ ions. We obtained Co doped ZnO from a solution obtained by
dissolving a mixture of zinc acetate with cobalt acetate (II) in ethylene glycol. We performed syntheses
lasting 25 min at the temperature of 220 ◦C in a microwave reactor. Figure 59 shows a homogeneous
product of Zn1−xCoxO NPs synthesis (x = 0, 0.01, 0.05, 0.10, 0.15) in the form of spherical particles
with the size of 30–40 nm without foreign phase inclusions. The obtained samples were subjected to
additional soaking for 0.5 h at 800 ◦C in an oxidising (synthetic air, Figure 60) and a reducing (nitrogen,
Figure 61) atmosphere. XRD tests proved the presence of a Co3O4 phase in the Zn0.85Co0.15O sample
soaked in air, while the presence of metallic Co in the Zn0.95Co0.05O, Zn0.90Co0.10O and Zn0.85Co0.15O
samples soaked in nitrogen. Co2+ ions underwent oxidation to Co3+ ions during the soaking in
synthetic air, which is presented by the equation of the reaction (55).

4Co2+ + O2 → 4Co3+ + 2O2− (55)

Co2+ ions underwent reduction to metallic Co0 in nitrogen, which is presented by the equation of
the reaction (56).

2Co2+ + N2 → 2Co0 + 2N2+ (56)

The soaking of the Zn1−xCoxO NPs samples resulted in:

- a change in their specific surface area from 37–39 m2/g to merely 3 m2/g,
- an increase in the particle size from the range of 30–40 nm to the range of 50–2000 nm depending

on the amount of Co,
- a change in the morphology from homogeneous spherical NPs (Figure 59) to heterogeneous

hexagonal or cubic NPs (Figures 60 and 61).
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Figure 59. SEM images of ZnO nanopowders in their as-produced (before annealing) state: (a) undoped,
(b) doped with 1 mol% of Co2+, (c) 5 mol% of Co2+, (d) 10 mol% of Co2+, and (e) 15 mol% of Co2+ ions.
Reprinted with permission from [798], Copyright©2015 Wojnarowicz et al., Article licensed under a
CC BY 2.0.
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Figure 60. SEM images of annealed ZnO nanopowders after annealing at 800 ◦C in nitrogen: (a) undoped,
(b) doped with 1 mol% of Co2+, (c) 5 mol% of Co2+, (d) 10 mol% of Co2+, and (e) 15 mol% of Co2+ ions.
Reprinted with permission from [798], Copyright©2015 Wojnarowicz et al., Article licensed under a
CC BY 2.0.
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Figure 61. SEM images of annealed ZnO nanopowders after annealing at 800 ◦C in synthetic air:
(a) undoped, (b) doped with 1 mol% of Co2+, (c) 5 mol% of Co2+, (d) 10 mol% of Co2+, and (e) 15 mol%
of Co2+ ions. Reprinted with permission from [798], Copyright ©2015 Wojnarowicz et al., Article
licensed under a CC BY 2.0.

Details of other research papers concerning the ZnO nanocomposites or ZnO hybrid nanostructures
obtained by the solvothermal synthesis with additional heat treatment are presented in Table 12.

Table 12. Summary of the microwave solvothermal synthesis of ZnO nanocomposites or ZnO hybrid
nanostructures with additional heat treatment.

Type of
Composite Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

undoped ZnO Zn(CH3COO)2·2H2O, NaOH,
isopropanol (solvent)

duration 5 min;
microwave oven

600 ◦C in air
for 1 h

spherical nanoparticles
(30 nm) [823]

undoped ZnO
Zn(CH3COO)2·2H2O, NaOH,
1-butyl-3-methylimidazolium

chloride (solvent)

duration 1 min;
power: 400–1000 W;

microwave oven

500 ◦C in air
for 3 h

nanoparticles; size from
15–25 to 50–70 nm [824]

undoped ZnO

Zn(C5H7O2)2·xH2O,
C2H5(OH) (solvent), CH3OH

(solvent),
polyvinylpyrrolidone (PVP),

cetyltrimethylammonium
bromide (CTAB), and Triton

X100, H2O

duration: 20 s–5 min;
power: 160–800 W;

microwave oven
(800 W) with a
water-cooled

condenser (reflux
system)

500 ◦C in air
for 2–5 min

films on Si, Ge, Cr/Si,
glass, indium tin oxide

coated glass and
polymer substrates,

(spherical nanoparticles
(diameter: ∼15) nm or

nanorods (length:
1–3 µm))

[825–830]

undoped ZnO Zn(CH3COO)2·2H2O, NaOH,
dimethylformamide (DMF)

duration 60 min;
power: 300 W;

microwave oven

500 ◦C in air
for 3 h

spherical nanoparticles
(as-synthesised

24–26 nm, annealed
33–34 nm)

[831]

undoped ZnO
Zn(NO3)2·6H2O,

2-methylimidazole, HCOONa,
CH3OH (solvent)

T: 120 ◦C; duration:
2 h; microwave

reactor

550 ◦C in air
for 2 h

uniform particle
approximately rhombic

dodecahedron facets,
size: ~97 nm

[832]

Co doped ZnO
Zn(CH3COO)2·2H2O,

Co(CH3COO)2·2H2O, urea,
C2H4(OH)2 (solvent)

duration 30 min;
power: 500 W;

microwave oven
400 ◦C in air

Zn1−xCoxO (x = 0.1, 0.2,
0.3, 0.4), nanoparticles

(~24 nm), paramagnetic
behaviour

[833]
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Table 12. Cont.

Type of
Composite Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Co doped ZnO
Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O,
C2H4(OH)2 (solvent)

T: 220 ◦C, duration:
25 min; power: 100%;

microwave reactor
(600 W)

800 ◦C in
nitrogen for

0.5 h,
800 ◦C in

synthetic air
for 0.5 h

Zn1−xCoxO (x = 0, 0.01,
0.05, 0.10, 0.15);

spherical nanoparticles:
SSA: 3 m2/g, diameter:

300–400 nm,
paramagnetic behaviour

[798]

Co doped ZnO
Zn(CH3COO)2·2H2O,

Co(CH3COO)2·2H2O, NaOH,
HCl, C2H4(OH)2 (solvent)

pH: 6–12; duration:
until microwave
heating solvents
were evaporated;

power: 500 W;
microwave oven

400 ◦C in air
Zn0.94Co0.06O;

nanoparticles (7–23 nm),
paramagnetic behaviour

[834]

Co doped ZnO
Zn(CH3COO)2·2H2O,

Co(CH3COO)2·2H2O, urea,
C2H4(OH)2 (solvent)

until microwave
heating solvents
were evaporated;
microwave oven

300 ◦C in air
for 1 h

Zn1−xCoxO
(x = 0.001-0.004), average
crystallite size 18–28 nm;

super paramagnetic
nature and

ferromagnetic behaviour

[835]

Fe doped ZnO

Zn(CH3COO)2·2H2O,
Fe(NO3)2·9H2O, NaOH,

polyvinylpyrrolidone (PVP),
C2H5OH (solvent)

pH: 11; duration
2 min; power: 140 W;

microwave oven

200 ◦C in air
for 1 h

nanoparticles
(11–17 nm), Fe content:

0–20%
[836]

Mn doped ZnO
Zn(CH3COO)2·2H2O,
Mn(CH3COO)2·4H2O,
C2H4(OH)2 (solvent)

duration: 30 s cycles
for 20 min in total;

power: 650 W;
microwave oven

400 ◦C in air Zn1−xMnxO (x = 0.1–0.4),
spherical nanoparticles [837]

Ag-ZnO

Zn(CH3COO)2·2H2O, AgNO3,
Na2O2, isopropanol (solvent),

cetyltrimethylammonium
bromide (CTAB)

T: 200 ◦C; duration
2–6 h; microwave

reactor

300 ◦C in air
for 2 h

chrysanthemum-like
prismatic nanorods [838]

5. Microwave Hybrid Synthesis of ZnO

Microwave hybrid syntheses of ZnO NMs are divided into two following groups:

(1) Microwave hybrid synthesis method of pure ZnO nano and microstructures, where the literature
review results [844–886] are summarised in Table 13.

(2) Microwave hybrid synthesis method of ZnO composites or ZnO hybrid structures, where the
literature review results [887–927] are summarised in Table 14.

The following were used for obtaining ZnO nano- and microstructures in the literature:

(1) Ultrasonic microwave synthesis, which consists in the use of a new generation of microwave
reactors, which permit the presence of an ultrasonic homogeniser’s sonotrode in the precursor
mixture during the microwave heating. The ultrasonic homogeniser during its operation converts
electrical energy into mechanical energy by moving the tip of the titanium sonotrode immersed
in the fluid with a high frequency (19.5–40 kHz). Due to its inertia, the fluid no longer catches up
with the rapid motion of the sonotrode, which results in cavitation, i.e., formation of gas bubbles
that rapidly collapse, which is accompanied by sudden pressure changes, and as a consequence
creates an impact wave.

(2) Microwave assisted combustion synthesis, which consists in an exothermic reaction of combustion
of one of the reactants of the reaction mixture in an oxygen atmosphere. Generally, a mixture
composed among others of a Zn2+ salt and an organic component (fuel) is thoroughly mixed.
There are several possibilities of the final state of the reaction mixture, among others, powder,
pressed pastilles, gel, emulsion. The ready reaction mixture is introduced to a microwave
reactor or oven, subjected to microwave radiation, which leads to a rapid increase in the sample
temperature and ignition of the fuel, resulting in the formation of a ZnO powder.
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(3) Microwave assisted annealing, which consists in decomposition of the reaction mixture to ZnO
only under the influence of its heating as a result of microwave radiation.

(4) Microwave assisted sintering, which consists in microwave soaking of the earlier obtained ZnO.
(5) Microwave vapour deposition, which consists in ZnO deposition from a gaseous phase, mostly at

the atmospheric pressure, on the wafer (substrate) surface. For example, powdered ZnO, Zn or
a Zn2+ salt is introduced to a ceramic crucible made of Al2O3, which is closed with a cover to
which the substrate is attached on its inside part. Under the influence of microwave heating,
a plasma arc appears in the crucible, enabling the evaporation of the Zn2+ substrate, which is
deposited at the same time in the form of thin films on the whole surface of the ceramic container
in the form of ZnO. Of course, there are professional microwave based plasma deposition units,
which enable the application of inert carrier gases (e.g., argon, helium) or such gases (e.g., O2)
that can participate in chemical reactions leading to the formation of ZnO layers.

5.1. Reactants

The most popular reactants of the “Zn2+” zinc cation precursor used for the hybrid ZnO synthesis
according to the data derived from the literature review [844–927] (Tables 13 and 14) are Zn(NO3)2·6H2O,
Zn(CH3COO)2·2H2O, ZnO, metallic Zn, and others (Figure 62). Other reactants are ZnCl2, ZnSO4,
and Zn(OH)2.
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5.2. Morphology

Morphologies of ZnO NMs reported in the literature are presented in Tables 13 and 14 [844–927]
along with a description of their properties. ZnO NMs synthesised with the use of the microwave
hybrid method were characterised by the following shapes: block-shaped structures [859],
cables [899], corn-like microstructures [862], cubes [925], fibres [871], fluff-like structures [923],
foamy and porous structures [850], half-backed grenade-like structures [844], hourglass-like
structures [845], nails [878], wrinkle structures [923], spindle-like structures [844,888], spindle-like to
double-prism-like structures [844], tetrapods [883], platelets [849], needles [886,925], plates [902,903],
sheet-like structures [855,877,889], flakes [853,902,903,925], flower-like structures [847,859,881,887],
tubes [868–870,899,916], wires [867,874,880,883,899], layers (films) [856–858,865,873,891,900,912,913],
rods [852,861,881,883,889,907,919,920], and spherical particles [846,848,851,861,863,864,884,885,889,893,
905,908,910,921].

Examples of various morphologies of ZnO obtained by the microwave hybrid synthesis are
presented in Figures 63–69.
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Figure 63. X-ray powder diffraction (XRD) pattern (a), SEM (b,c), TEM (d) images and satisfactory
selected area electron diffraction (SAED) pattern (e) of the as-prepared spindle-like ZnO. Products
synthesised by microwave and ultrasonic wave combined method. Reprinted from [888], Copyright
(2019), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights
reserved. In order to re-use permission must be obtained from the rightsholder.Nanomaterials 2020, 10, x FOR PEER REVIEW 85 of 150 
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Figure 64. XRD pattern (a), SEM (b,c) and TEM (d,e) images of spindle-like Ag/ZnO nanocomposites.
Products synthesised by the microwave and ultrasonic wave combined method. Reprinted from [888],
Copyright (2019), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER].
All rights reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 65. (a–e) SEM images of the surface of the Zn sheet: (a) Low-magnified image before the
microwave irradiation. (b) Low-magnified image after the microwave irradiation. (c) Medium-
magnified image after the microwave irradiation. (d) High-magnified image after the microwave
irradiation; (e) TEM image of a ZnO nanoneedle. Products synthesised by direct microwave irradiation
on the Zn sheet under O2 and Ar atmosphere (total pressure: 1 atm). Reprinted from [886], Copyright
(2008), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights
reserved. In order to re-use permission must be obtained from the rightsholder. (f–g) TEM images
of (f) Zn-ZnO nanocables and (g) ZnO nanotubes. Reprinted (adapted) with permission from [899].
Products synthesised by microwave vapour deposition. Copyright© 2003, American Chemical Society.
All rights reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 66. (a–d) FESEM images display the shape and morphology of the microwave grown ZnO
microtubes. (a,b) FESEM images showing the outer hexagonal faceted surfaces and the inner smooth
and stepped surface of the ZnO microtubes. (c,d) FESEM images showing the side facets and lengths of
ZnO microtubes. (e–h) FESEM images of ZnO, (e,f) semi-microtube at higher temperature and (g,h)
randomly oriented, tube-like structures of ZnO. Products synthesised by microwave assisted sintering.
Reprinted from [869], Copyright (2015), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER]. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.
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Figure 67. SEM images (a,b), TEM image (c) and SAED patterns (d and insets of c) of the flower-like
ZnO nanostructures. Products synthesised by the microwave and ultrasonic wave combined method.
Reprinted from [887], Copyright (2011), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER]. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.Nanomaterials 2020, 10, x FOR PEER REVIEW 87 of 150 
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Figure 68. Photographs (a) of (Au, Ag)/ZnO nanocomposites; TEM images of Ag/ZnO nanostructures
(b) and Au/ZnO nanostructures (c). Products synthesised by the microwave and ultrasonic wave
combined method. Reprinted from [887], Copyright (2011), with permission from Elsevier [OR
APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission
must be obtained from the rightsholder.
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Figure 69. SEM images of synthesised ZnO nanomaterials using (a,b) compressed air, (c) high-purity
air, (d) O2, and (e) O2/N2 mixed gas. (f) Diagram shows length versus diameter of synthesised ZnO
nanomaterials (NW; nanowire, TP; tetrapod, and NR (S), (L); small and large nanorods). Products
were synthesised using a microwave plasma torch system at the atmospheric pressure. Reprinted
with permission from [883], Copyright ©2019 Lee et al., Article licensed under a CC BY 4.0, https:
//creativecommons.org/licenses/by/4.0/.

5.3. Synthesis of Pure ZnO by the Microwave Hybrid Method

An example of an interesting publication reporting results of the microwave and ultrasonic
wave combined synthesis of ZnO micro-/nanostructures is the paper by Li et al. [844]. As the
synthesis precursor, a solution obtained by mixing solutions of Zn2+ salts (zinc acetate dehydrate,
zinc acetylacetonate hydrate, zinc chloride) with 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid (HEPES) was used. Later, the mixture was continuously sonicated for 5 min with the power of 1000
W. Subsequently, the mixed solutions were heated to 110 ◦C within 3 min and kept at this temperature
for 17 min under microwave heating combined with discontinuous ultrasonic irradiation (1 s of
sonication and 2 s of interruption) with the power of 500 W. After finishing the synthesis the products
were centrifuged, thoroughly rinsed (water, ethanol) and subsequently dried. Li et al. [844] obtained
various morphologies of ZnO products, including grenade-like, column-like, spindle-like, rod-like,
shuttle-like and flower-like micro-/nanostructures. The size and shape of the ZnO nanostructures
was controlled by the authors by changing the Zn/HEPES molar ratio, pH value, and Zn precursor.
Figure 70 demonstrates the control of the ZnO morphology by changing the Zn/HEPES molar ratio.
When the Zn/HEPES molar ratio was adjusted to 3:8, half-backed grenade-like ZnO microstructures
were formed (Figure 70a,b). When the Zn/HEPES molar ratio was adjusted to 1:4, spindle-like ZnO
microstructures were formed (Figure 70c,d). When the Zn/HEPES molar ratio was adjusted to 1:8,
spindle-like to double-prism-like ZnO structures were formed (Figure 70e,f). When the Zn/HEPES
molar ratio was adjusted to 1:20, short spindle-like ZnO nanostructures were formed (Figure 70g,h).
When the Zn/HEPES molar ratio was adjusted to 1:40, irregular ZnO agglomerates were formed
(Figure 70g,h). Figure 71 presents a change in the ZnO morphology caused by changes in the pH (7.4,
8.4, and 9.4) in a precursor with the constant Zn/HEPES molar ratio of 1:5. Figure 72, in turn, shows a
change in the ZnO morphology caused by a change in the pH (7.4, 8.4, and 9.4) in a precursor with the
constant Zn/HEPES molar ratio of 1:2.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 70. SEM images of ZnO products prepared under different Zn/2-[4-(2-hydroxyethyl)-1-
piperazinyl]ethanesulfonic acid molar ratios: 3:8 (a,b); 1:4 (c,d); 1:8 (e,f); 1:20 (g,h); 1:40 (i,j). Products
synthesised the by microwave and ultrasonic wave combined method. Reprinted from [844], Copyright
(2013), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights
reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 71. SEM images of ZnO products synthesised from zinc acetylacetonate hydrate with the
Zn/HEPES molar ratio of 1:5 prepared under different pH values: 7.4 (a,b); 8.4 (c,d); 9.4 (e,f). Products
synthesised by the microwave and ultrasonic wave combined method. Reprinted from [844], Copyright
(2013), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights
reserved. In order to re-use permission must be obtained from the rightsholder.

An example of a publication showing results of obtaining ZnO with the use of the microwave
induced combustion process is the paper by Cao et al. [847]. In this paper, an aqueous solution of
zinc nitrate with an addition of urea was used as a reaction precursor. The samples were placed in an
ordinary microwave oven and subjected to microwaves. After boiling, evaporating, and concentrating,
the precursor rapidly foamed up, deflagrated, and released heat and gases. Synthesis products were
heterogeneous ZnO microstructures, the morphology of which changed depending on the urea/Zn2+

molar ratio (1:1, 5:3, and 3:1), which is presented in Figure 73. The effect of the high temperature of the
microwave induced combustion process was that the vast majority of the obtained synthesis products
were ZnO microstructures.
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Figure 72. SEM images of ZnO products synthesised from zinc acetylacetonate hydrate with the
Zn/HEPES molar ratio of 1:2 under different pH values: 7.4 (a,b); 8.4 (c,d); 9.4 (e,f). Products synthesised
by the microwave and ultrasonic wave combined method. Reprinted from [844], Copyright (2013),
with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved.
In order to re-use permission must be obtained from the rightsholder.
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Figure 73. SEM images of ZnO samples with the following molar ratios of urea/Zn2+ (a,b) 1:1, (c,d)
5:3, and (e,f) 3:1. Products synthesised by the microwave induced combustion process. Reprinted
from [847], Copyright (2010), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT
OWNER]. All rights reserved. In order to re-use permission must be obtained from the rightsholder.

Hu et al. [864] report obtaining ZnO NPs by sol-gel—microwave assisted annealing. As the
reaction precursor, a suspension obtained by mixing a solution of zinc acetate in anhydrous ethanol with
a solution of LiOH·H2O in anhydrous ethanol was used. Hu et al. [864] performed a range of syntheses
to examine the impact of temperature and duration on a change in ZnO NPs properties, namely:

- for the same duration (20 min) at various reaction temperatures (30, 40, 50 and 60 ◦C),
- for the same reaction temperature (50 ◦C) with various durations (10, 20, 30 and 40 min).

The product in the form of a transparent ZnO sol was removed from the microwave reactor,
and subsequently introduced to hexanol and cooled to 4 ◦C. Thus prepared suspensions were centrifuged
and the obtained white powders were dried in the air at the temperature of 80 ◦C. According to the
Scherrer’s formula, the particle size of ZnO prepared at 30 ◦C for 20 min, 40 ◦C for 20 min, 50 ◦C for
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10 min, 50 ◦C for 20 min, 50 ◦C for 30 min, 60 ◦C for 20 min, and 50 ◦C for 40 min are 3.86, 4.09, 4.33,
4.78, 4.96, 5.14, and 6.68 nm, respectively [864]. Zhou et al. [868] report the results of obtaining ZnO
hexagonal tubes by the microwave sintering method. For the synthesis, a mixture of nanometric and
micrometric ZnO was used, which was obtained by triturating for 1 h in an agate mortar and then
pressed into pills with a hollow core, which itself acted as a form of a growth chamber. Thus prepared
pastilles were placed in a microwave chamber on a quartz plate surface. The pastilles were subjected to
microwave heating at the temperature of 1100–1350 ◦C for 40 min. The product was tubes (Figure 74)
with the diameter exceeding 10 µm, length exceeding 100 µm, while wall thickness ranging from 0.5
to 1 µm. The hexagonal tubes growth process was explained by the authors [868] by proposing a
vapour-solid mechanism.
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Al2O3 crucible. The crucible was covered by a glass substrate, on which the crucible cover was placed 
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Figure 74. (a) SEM image of ZnO tubes growing by the microwave heating method showing well
faceted end and side surfaces. (b) SEM images of different stages of ZnO tubes by the microwave
heating method. Products synthesised by the microwave sintering. Reprinted from [868], Copyright
(2005), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights
reserved. In order to re-use permission must be obtained from the rightsholder.

Takahashi [871] reports obtaining ZnO nano-fibres by means of a domestic microwave oven.
As the reaction precursor, he used a mixture of Zn powder and steel-wool, which was introduced to an
Al2O3 crucible. The crucible was covered by a glass substrate, on which the crucible cover was placed
(Figure 75a). The sample was subjected to microwave heating with the power of 1000 W for 30 s. As a
result of microwave heating, ZnO nano-fibres (Figure 75b) with the diameter of ca. 50 nm and the
length of 0.5–1 µm (Figure 75c) grew on the glass substrate.Nanomaterials 2020, 10, x FOR PEER REVIEW 91 of 150 
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Figure 75. (a) The schematic of the sample environment. (b) Typical surface-section SEM micrograph
of obtained ZnO powder. (c) TEM image of the obtained ZnO nano-fibre. Products synthesised by the
microwave vapour deposition. Reprinted from [871], Copyright (2007), with permission from Elsevier
[OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission
must be obtained from the rightsholder.

Details of other research papers concerning the pure ZnO obtained by the microwave hybrid
method are presented in Table 13.
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Table 13. Summary of synthesis of pure ZnO by the microwave hybrid method.

Type of
Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Ultrasonic
microwave
synthesis

Zn(CH3COO)2·2H2O,
ZnCl2·2H2O,

2-[4-(2-hydroxyethyl)-1-
piperazinyl]ethanesulfonic

acid (HEPES) (different
concentrations), H2O

pH: 5.4–9.4; T: 110 ◦C;
duration: 17 min
(discontinuous

ultrasonic irradiation
(1 s sonication and 2 s
interruption); power:

500 W; microwave
and ultrasonic wave

combined reactor

-

half-backed
grenade-like ZnO
microstructures,

uniform spindle-like
ZnO microstructures;

spindle-like to
double-prism-like

structures

[844]

Ultraviolet
assisted -

ultrasonic
microwave
synthesis

Zn(CH3COO)2·2H2O,
C16H33(CH3)3NBr

(cetyltrimethylammonium
bromide, CTAB),

(CH2)6N4
(hexamethylenetetramine,

HMT), H2O

T: 98 ◦C; duration:
10–25 min; power:

150 W; UV-
microwave and
ultrasonic wave

combined reactor

-

hourglass-like ZnO
microstructures
(diameter: 1 µm,

length: 2 µm)

[845]

Microwave
induced

combustion
synthesis

ZnSO4, oxalic acid,
polyvinyl alcohol (fuel)

duration: 0–30 min;
power level: 0–90%;

microwave oven
-

nanoparticles:
crystallite size:

~33 nm
[846]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, urea
(fuel), H2O

power: 170–680 W;
microwave oven -

flower-like
microstructures

(2–5 µm) and
irregular

block-shaped
particles

(100–300 nm)

[847]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, urea
(fuel), H2O

duration: 10 min;
microwave oven

(700 W)

spherical
nanoparticles
(10–100 nm)

[848]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, urea
(fuel), H2O

duration: 20 min;
microwave oven

(800 W)
nanoplatelets [849]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O,
C2H4(OH)2 (fuel)

microwave oven
(800 W) - foamy and porous

structures [850]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, glycine
(fuel)

duration: 2 min;
power: 80%;

microwave oven
- nanoparticles

(20–25 nm) [851]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, using
citric acid (C6H8O7) as a

fuel, NH4OH, H2O

pH: 4; duration:
2‘min; power: 80%;

microwave oven

800 ◦C for 2 h
in air rods [852]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, glycine
(fuel), H2O

duration: 10 min;
microwave oven

(750 W)
- nanoflakes [853]

Microwave
induced

combustion
process

Zn(CH3COO)2·2H2O,
H2O

duration: 6 min;
power: 800 W;

microwave oven
- powder [854]

Microwave
induced

combustion
process

Zn(NO3)2·6H2O, Indian
bael (Aegle marmelos)

juice - different volumes
(fuel)

duration: 10 min;
microwave oven

500 ◦C for 1 h
in air

heterogeneous
particles, sheet like

structures,
[855]

Microwave
assisted

annealing
Zn(OH)2, NH4(OH)

T: 140–320 ◦C,
duration: 30 min;

microwave reactor
- layers on SiO2 [856]
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Table 13. Cont.

Type of
Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Sol-gel
-microwave

assisted
annealing

Zn(CH3COO)2·2H2,
2-methoxyethanol (ME),

monoethanolamine
(MEA),

T: 140–320 ◦C,
duration: 3–12 min;

power: 65 W;
microwave oven

(750 W)

-
layers (40 nm) on
indium-tin oxide

cathodes
[857]

Microwave
assisted

annealing
Zn(NO3)2·6H2O, H2O

T: 250 ◦C, duration:
3 min; microwave

oven (3 kW)
- layers on SnO2 [858]

Microwave
assisted

annealing

Zn(NO3)2·6H2O, extract
(fruit, seed or pulp), H2O

duration: 8 min;
power: 340 W;

microwave oven
-

flower-like,
hexagonal, and
block-shaped

nanostructures,
size: 27–85

[859]

Microwave
assisted

annealing

Zn(NO3)2·6H2O,
cetyltrimethylammonium

bromide (CTAB),
hexamethylenetetramine –

(HMTA) (different
concentrations), H2O

duration: 30, 60 min;
microwave oven - nanopowders [860]

Microwave
assisted

annealing

Zn(NO3)2·6H2O, PEG400
(polyethylene glycol, M =

400), NaOH, H2O,
C2H5(OH)

duration:
10 × 10 min and 4 ×
10 min with on–off

mode with a
duration interval of 1
min; power: 136–800
W; microwave oven

(800 W)

500 ◦C in air for
0.5 h

sphere particles
(10–50 nm) and rods
(lengths: 50–200 nm,

diameters:
15–50 nm)

[861]

Sol-gel –
microwave

assisted
annealing

Zn(NO3)2·6H2O, HNO3
(65%), H2O

duration: 30–40 min;
microwave oven -

SSA: 0.12–0.2 m2/g,
corn-like

microstructures
[862]

Sol-gel -
microwave

assisted
annealing

Zn(CH3COO)2·2H2O,
C2H4(OH)2 (solvent)

pH: 6; duration:
10 min; power: 600
W; microwave oven

450 ◦C in air for
2 h

nanoparticles
(average crystallite

size 24 nm)
[863]

Sol-gel -
microwave

assisted
annealing

Zn(CH3COO)2·2H2O,
LiOH·H2O, C2H5OH

(solvent)

T: 30–60 ◦C;
duration: 10–40 min;
microwave reactor

(600 W)

80 ◦C in air for
2 h

quantum-sized
particles 4–7 nm [864]

Microwave
assisted
sintering

ZnO, organic compounds
duration: 10–30 min;

microwave oven
(900 W)

-

thick films on
alumina substrate,

heterogeneous
microstructures

[865]

Microwave
assisted
sintering

ZnO powder, carbon
charcoal powder

duration: 20–60 min;
microwave oven

(1000 W)
-

ZnO nanoclusters,
size from 8 µm to

10 µm
[866]

Microwave
sintering ZnO powder, graphite, O2

duration: 3 min;
power: 100–1200 W;

microwave oven;
oxygen flow

-
nanowires,

diameters: 2–70 nm,
length: 5–15 µm

[867]

Microwave
sintering

ZnO nano and
micropowders, acetone

T: 1100–1350 ◦C;
duration: 40 min;

power 5 kW;
-

hexagonal tubes,
diameter: 10 µm,

length: 100 µm, wall
thickness: 0.5–1 µm

[868]

Microwave
vapour

deposition

ZnO nanoparticles (20–30
nm; 48.9 m2/g) )

T: 1350–1400 ◦C;
duration: 15 min;
power: 3850 W;

traveling-wave mode
microwave system

(5000 W)

-

microtubes
(hexagonal hollow),
average diameter:

60 µm, length:
250 µm; wall

thickness: 3–5 µm

[869,870]
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Table 13. Cont.

Type of
Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Microwave
vapour

deposition
Zn powder, steel-wool

duration: 30 s;
microwave oven

(1000 W)
-

nanofiber: diameters
50 nm, lengths

0.5–1 µm
[871]

Microwave
vapour

deposition

Zn powder, steel-wool,
O2/N2 = 20/80, 40/60, 60/40,

80/20

microwave oven
(1000 W) -

nanoparticles with
controlled

morphologies
[872]

Microwave
vapour

deposition

Zn(CH3COO)2·2H2O,
C2H5OH, vacuum of

5 kPa, O2

power: 400–1200 W;
microwave based
plasma deposition

unit (2000 W)

-
films (NPs diameter:
10–18 nm) deposited
on glass substrates

[873]

Microwave
vapour

deposition

metallic Zn flakes
(2–3 mm)

duration: <5 min;
microwave oven

(800 W)
- nanowires: diameter

70–80 nm [874]

Microwave
vapour

deposition

ZnO microtubes (wall
thickness less than 0.5–1)

T: 800–1450 ◦C;
microwave system

(3000 W)
-

single-crystal
microtubes rods
(above 1300 ◦C);

crystal rods (below
1150 ◦C, diameters

from 50 nm to a
few µm)

[875]

Microwave
vapour

deposition

ZnO, Zn, graphite, N2
(carrier gas, 25 cm3)

T: 1100 ◦C; duration:
3–5 min microwave

system (3000 W)
-

nanowires, nanobelts
and microrods on

different substrates
materials (sapphire,

silicon carbide,
polycrystalline

alumina);
micro/nanotubes up

150 mm, wall
thickness 0.3–1 mm,
length up to 2–4 mm

[876]

Microwave
vapour

deposition
ZnO, graphite

duration: 2 min;
microwave oven

(800 W)
-

nanosheets: widths
several to tens of µm
thickness 20–80 nm

[877]

Microwave
plasma assisted

chemical
vapour

deposition

ZnO powder, graphite
powder, He (carrier gas)

duration: 5 min.;
microwave oven

(1000 W)
-

nanonails: size of
caps: 25–150 nm,

necks: 30–200 nm,
shank: 250–450 nm

[878]

Microwave
vapour

deposition

Zn(CH3COO)2·2H2O,
C2H5(OH)

duration: 70 s; carrier
gas: air and O2;

microwave plasma
system (700 W)

-

film like, worm-like,
flower like and

dot-like structures on
glass, silicon wafer
and Al2O3/Si wafer

substrates

[879]

Microwave
vapour

deposition
Zn, air

duration: 4 s; carrier
gas: air; microwave

plasma system
-

nanowires deposited
on aluminium foil

substrate, glass,
paper, microfibre,

polycarbonate film,
paraffin wax

[880]

Microwave
vapour

deposition
Zn, H2O

P: 20 kPa; power:
135 W; microwave

plasma system
-

flower-like structures
composed of

nanorods (diameter
50 nm, lengths
150–200 nm)

[881]
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Table 13. Cont.

Type of
Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Microwave
vapour

deposition

Zn(CH3COO)2·2H2O,
Zn(NO3)2·6H2O,

ZnCl2·2H2O, ethanol

duration: 10–120 s;
protective gas and

carrier gas: pure Ar
(300 cm3/g);

microwave plasma
system

-

glass quadratic slides
were coated by ZnO
and/or Zn particles,
whose sizes ranged

from a few
micrometres to
∼20 nm

[882]

Microwave
plasma Zn powder (10 µm)

protective gas and
carrier gas: air, O2,
O2/N2 (20/80 vol%);

flow rate 10 l/m;
microwave plasma

system

-

wires (diameter:
111 nm, length:

5835 nm), tetrapods
(diameter: 30 nm,

length: 257 nm), rods
(diameter:

82–627 nm, length:
309–853 nm),

tetrapods (diameter:
30 nm, length:

257 nm)

[883]

Microwave
vapour

deposition

Zn(CH3COO)2·2H2O,
NaOH, H2O, atmospheric

pressure

pH: 11; power: 800
W; home-made

microwave induced
plasma in liquid
system (1.5 kW)

- NPs; diameter:
23 nm [884]

Microwave
assisted ball

milling
Zn(CH3COO)2·2H2O

duration: 4–20 h;
power: 800 W;

microwave reactor
- nanoparticles,

diameters: 15 nm [885]

-
1 cm × 1 cm × 125 µm Zn
sheet, gas mixture of O2

(20 sccm) and Ar (80 sccm)

duration: 3 s;
microwave oven

(1000 W)
-

growth of
nanoneedles on the

Zn sheet; length
~500 nm, tip ~40,

pillar: ~100

[886]

5.4. Types of ZnO Nanocomposites or ZnO Hybrid Nanostructures Obtained by the Microwave Hybrid
Synthesis Method

The microwave hybrid synthesis enables obtaining:

- ZnO doped with the following ions: Al3+ [890], Ba2+ [893], Co2+ [895,896], Cu2+ [904,914],
Cr3+ [897], Eu3+ [907,908], Ga3+ [910,911], Mg2+ [915] and Sm3+ [919];

- ZnO co-doped with the following ions: Ce2+-Cu2+ [894] and Mn2+-Co2+ [917], where M = Mn2+,
Ni2+, Fe3+ and Cu2+ [914];

- composite and hybrid materials: Ag-ZnO [887–889], Au-ZnO [887], Ag–ZnO–graphene [889], Al3+

doped ZnO/Sn doped In2O3 [891], Au/Fe2O3–ZnO [892], ZnO/BiOBr [898], Zn–ZnO [899,900],
ZnO–ZrO2 [901], ZnAl2O4/ZnO [902,903], Cu–ZnO–Al2O3 [905], Cu–ZnO [906], Fe2O3/ZnO [909],
In2O3–Ga2O3–ZnO [912,913], MgO–ZnO [916], Sb2O3–MnO–CoO–Cr2O3–ZnO [918], TixOy–
ZnO [920], ZnO/ZnFe2O4 [921], ZnO/multi-walled carbon nanotube [922], ZnO—exfoliated
graphene [923], ZnO–expandable graphite [927], and ZnO–reduced graphene oxide [924,925].

5.5. Synthesis of ZnO Nanocomposites or ZnO Hybrid Nanostructures by the Microwave Hybrid Method

Dou et al. [889] report obtaining ZnO NPs, Ag/ZnO nanocomposites and Ag/ZnO/graphene
nanocomposites by the microwave and ultrasonic wave combined method. In order to obtain products,
the aqueous mixture of:

- zinc nitrate with hexamethylenetetramine was used to obtain ZnO NPs;
- zinc nitrate, silver nitrate with hexamethylenetetramine was used to obtain Ag/ZnO nanocomposites;
- zinc nitrate, silver nitrate with hexamethylenetetramine and an addition of graphene was used to

obtain Ag/ZnO/graphene nanocomposites.
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Identical synthesis parameters were applied for each sample, namely after stirring the suspensions
for 10 min, the reaction vessel with the sample was put into an ultrasonic microwave reaction system
and kept at 90 ◦C for 2 h and sonicated for 30 min. Subsequently, the samples were centrifuged,
rinsed with water and then dried in a vacuum dryer. Dou et al. [889] provide only the results of the
morphology of Ag/ZnO/graphene nanocomposites (Figure 76).
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Figure 76. Images of the Ag/ZnO/graphene nanocomposites: (a) SEM; (b) TEM. Products synthesised
by the microwave and ultrasonic wave combined method. Reprinted from [889], Copyright (2015),
with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved.
In order to re-use permission must be obtained from the rightsholder.

Mary et al. [894] report obtaining ZnO co-doped with Ce2+ and Cu2+ ions by the microwave
induced combustion process. Reaction precursors were obtained by dissolving zinc nitrate, cerium
nitrate, copper nitrate in deionised water with an addition of urea as a fuel. The crucible with a
precursor was placed in a microwave oven, where the precursor solution underwent various reactions
for 8 min of heating. Namely, the solution first boiled, then underwent dehydration, and subsequently
decomposition with emission of large quantities of vapours in the form of smoke. When the solution
reached the spontaneous ignition point, the combustion heat released and transformed the sample into
a solid powder. ZnO powders were prepared with the addition of copper (Cu) and cerium (Ce) of
different molar ratios (Zn1−2xCexCux)O with x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05 to ZnO. The general
equation of the synthesis reaction is described by Equation (57).

Zn(NO3)2 + Cu(NO3)2 + Ce(NO3)2
urea, water MH (T)
−−−−−−−−−−−−−−−→Zn1−2xCexCuxO + gaseous products (57)

The size of Zn1−2xCexCuxO crystallites was 35 nm, 38 nm, 40 nm, 44 nm, 46 nm and 46 nm
depending on the dopant content of 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05, respectively. The SEM results
(Figure 77) indicated that the size of Zn1−2xCexCuxO particles decreased in line with the increase in the
dopant content. The structure of the obtained pure ZnO was polycrystalline, where the ZnO particle
size reached several hundred nm, while for the Zn0.90e0.05Cu0.05O sample the largest particle size
reached up to several dozen nm.

Konou et al. [893] described Ba doped ZnO by the microwave assisted annealing process. Figure 78
shows a scheme according to which samples were obtained by Konou et al. [893]. First, NaOH (a molar
ratio of OH− and Zn2+ kept to 3) was dropped into solutions of zinc nitrate and barium chloride,
and subsequently the obtained suspension was filtered, rinsed and dried. The obtained powders
were soaked in a microwave furnace at the temperature of 500 ◦C for 30 min. The barium doping
concentration of ZnO was 0, 1, and 2 at%. Figure 79 presents the morphology of ZnO, Ba (1 at%) doped
ZnO and Ba (2 at%) doped ZnO. The obtained products were characterised by a compact (sintered)
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structure, which resulted from the application of a high soaking temperature (500 ◦C). All three samples
were characterised by a heterogeneous shape and by a large range of particle/aggregate sizes although
the crystallite size was the same in all samples (20–22 nm).
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Figure 77. SEM images of Zn1−2xCexCuxO: (a) Pure ZnO, (b) Zn0.98Ce0.01Cu0.01O, (c) Zn0.94Ce0.03Cu0.03O
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Reprinted from [894], Copyright (2015), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER]. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.
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Kim et al. [927] described a microwave sintering synthesis of ZnO NPs/graphene nanocomposites,
where individual steps of obtaining ZnO NPs/graphene nanocomposites are presented in Figure 80.
Commercially available ZnO NPs and expandable graphite were used for the synthesis. The expandable
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graphite sample was introduced to a crucible (Al2O3) and subjected to microwave heating (1 kW,
1 min), after which the product was dispersed in ethanol and sonicated for 10 min to exfoliate the
graphite. Subsequently, ZnO NPs together with exfoliated graphite (0.01 wt%) were mixed in ethanol
through sonication. The mixture was filtered off on a filter paper and subsequently the powders
were placed in a crucible (Al2O3) and heated in a microwave oven (1 kW, 5 min). Thus obtained
ZnO-graphene nanocomposite powders were dispersed in ethanol and were spray-coated on a heated
SiO2 substrate using a spray gun (140–160 ◦C). Figure 81a presents the morphology of commercial ZnO
NPs, while Figure 81b,c show SEM images of ZnO/graphene nanocomposites without the microwave
sintering process and after the microwave sintering process, respectively. The main difference between
the morphology of samples in Figure 81b,c was the emergence of secondary ZnO NPs with smaller
sizes in the sample after the microwave sintering process, which is perfectly visible in TEM images
(Figure 82). The results achieved by Kim et al. [927] are very interesting, because generally the sintering
process of NPs leads to their size growth, but in this particular case, a secondary ZnO NPs phase with
smaller sizes was obtained.
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Figure 80. Schematic illustration of different steps of the microwave sintering synthesis of ZnO
NPs/graphene nanocomposites. Products synthesised by the microwave sintering process. Reprinted
from [927], Copyright (2017), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT
OWNER]. All rights reserved. In order to re-use permission must be obtained from the rightsholder.
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Figure 81. SEM images of (a) pristine ZnO NPs, (b) ZnO NPs/graphene nanocomposites without the
microwave sintering process and (c) ZnO NPs/graphene nanocomposites after the microwave sintering
process. Products synthesised by the microwave sintering process. Reprinted from [927], Copyright
(2017), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights
reserved. In order to re-use permission must be obtained from the rightsholder.

Nanomaterials 2020, 10, x FOR PEER REVIEW 99 of 150 

 

 

Figure 82. TEM images of (a–c) ZnO NPs/graphene nanocomposites. Products synthesised by the 

microwave sintering process. Reprinted from [927], Copyright (2017), with permission from Elsevier 

[OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use 

permission must be obtained from the rightsholder. 

Zhang et al. report [899] obtaining Zn-ZnO nanocables and ZnO nanotubes by microwave 

vapour deposition with the use of a microwave plasma system. The scheme of their experiment is 

shown in Figure 83. Zinc powder present in the quartz crucible was placed inside a horizontal quartz 

tube. Pure hydrogen (H2) was used as the protective gas and the carrier gas, which was introduced 

to the reaction chamber with the flow rate of 50–90 sccm. The pressure in the reaction chamber was 

maintained at ca. 4 Torr. Microwaves (400 W) were introduced with the use of a wave guide in the 

central part of the quartz tube for generating stable plasma. The temperature of the microwave 

plasma was estimated at about 1000 °C. As an additional heat source, a movable tubular furnace was 

used, which generated the temperature of 700 °C at a stretch of 20 cm, while the estimated 

temperature in the quartz tube along the same stretch was ca. 500 °C. After switching the heating off 

for 30 min, the H2 flow was stopped and a black product covering the internal surface of the quartz 

tube was observed. For the purpose of oxidising the formed product, O2/Ar gas (volume ratio 1:50) 

was introduced to the microwave plasma system for 15–30 min. Then, the tubular furnace was moved 

back-and-forth along the quartz tube until only white powder was left. The morphology of the 

obtained products could be controlled through the oxidation duration (15–30 min) and the H2 flow 

rate (50–90 sccm). Figure 65f,g shows the morphology of the final products. The nanotubes had a 

uniform inner and outer diameter of about 10 and 40 nm, respectively, while the average length of 

the nanotubes was ca. 1 µm. Figure 65f,g reveal that the outer diameter of ZnO nanotubes is virtually 

identical to the outer diameter of Zn–ZnO nanocables. 

 

Figure 83. Schematic illustration of the microwave plasma system for Zn-ZnO nanocables and ZnO 

nanotubes growth. Reprinted (adapted) with permission from [899]. Copyright ©  2003, American 

Chemical Society. All rights reserved. In order to re-use permission must be obtained from the 

rightsholder. 

Details of other research papers concerning the of ZnO nanocomposites or ZnO hybrid 

nanostructures obtained by the microwave hybrid method are presented in Table 14. 

Figure 82. TEM images of (a–c) ZnO NPs/graphene nanocomposites. Products synthesised by the
microwave sintering process. Reprinted from [927], Copyright (2017), with permission from Elsevier
[OR APPLICABLE SOCIETY COPYRIGHT OWNER]. All rights reserved. In order to re-use permission
must be obtained from the rightsholder.

Zhang et al. report [899] obtaining Zn-ZnO nanocables and ZnO nanotubes by microwave vapour
deposition with the use of a microwave plasma system. The scheme of their experiment is shown
in Figure 83. Zinc powder present in the quartz crucible was placed inside a horizontal quartz tube.
Pure hydrogen (H2) was used as the protective gas and the carrier gas, which was introduced to
the reaction chamber with the flow rate of 50–90 sccm. The pressure in the reaction chamber was
maintained at ca. 4 Torr. Microwaves (400 W) were introduced with the use of a wave guide in the
central part of the quartz tube for generating stable plasma. The temperature of the microwave plasma
was estimated at about 1000 ◦C. As an additional heat source, a movable tubular furnace was used,
which generated the temperature of 700 ◦C at a stretch of 20 cm, while the estimated temperature in the
quartz tube along the same stretch was ca. 500 ◦C. After switching the heating off for 30 min, the H2

flow was stopped and a black product covering the internal surface of the quartz tube was observed.
For the purpose of oxidising the formed product, O2/Ar gas (volume ratio 1:50) was introduced to
the microwave plasma system for 15–30 min. Then, the tubular furnace was moved back-and-forth
along the quartz tube until only white powder was left. The morphology of the obtained products
could be controlled through the oxidation duration (15–30 min) and the H2 flow rate (50–90 sccm).
Figure 65f,g shows the morphology of the final products. The nanotubes had a uniform inner and
outer diameter of about 10 and 40 nm, respectively, while the average length of the nanotubes was ca.
1 µm. Figure 65f,g reveal that the outer diameter of ZnO nanotubes is virtually identical to the outer
diameter of Zn–ZnO nanocables.
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Figure 83. Schematic illustration of the microwave plasma system for Zn-ZnO nanocables and ZnO
nanotubes growth. Reprinted (adapted) with permission from [899]. Copyright © 2003, American
Chemical Society. All rights reserved. In order to re-use permission must be obtained from
the rightsholder.

Details of other research papers concerning the of ZnO nanocomposites or ZnO hybrid
nanostructures obtained by the microwave hybrid method are presented in Table 14.

Table 14. Summary of the microwave hybrid synthesis method of ZnO nanocomposites or ZnO
hybrid nanostructures.

Type of
Product Type of Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Ag/ZnO,
Au/ZnO,

ZnO

ultrasonic
microwave

synthesis - UV
irradiation

Zn(CH3COO)2·2H2O,
NaOH, H2O, HAuCl4 -

C2H5(OH) (solvent)
AgNO3 - C2H5(OH)

(solvent)

duration: 30 min
(combined

discontinuous
ultrasonic irradiation
(1 s sonication and 2 s
interruption); power:

500 W; microwave
and ultrasonic wave

combined reactor

-
flower-like ZnO
nanostructures

(~800 nm)
[887]

Ag/ZnO,
ZnO

ultrasonic
microwave

synthesis and
deposition-

precipitation

Zn(CH3COO)2·2H2O
(0.5 M), urea (0.001 M),
cetyltrimethylammonium

bromide
(CTAB_ (0.00035 M),
C2H4(OH)2 (solvent)

AgNO3 (10 M), NaOH
(1 M)

duration: 20 min
(combined

discontinuous
ultrasonic irradiation
(1 s sonication and 2 s
interruption); power:

500 W; microwave
and ultrasonic wave

combined reactor

-
spindle-like
micro-and

nanostructures
[888]

Ag/ZnO,
Ag/ZnO/
graphene,

ZnO

ultrasonic
microwave
synthesis

graphite oxide
(modified Hummers

method),
Zn(NO3)2·6H2O,

AgNO3,
hexamethylenetetramine
[HMT, (CH2)6N4], H2O

T: 90 ◦C, duration: 2 h,
ultrasonic microwave

reaction system
(700 W)

-

ZnO: rods,
Ag/ZnO: rods with

nanoparticles
Ag/ZnO/graphene:

rods with
nanoparticles and

sheets

[889]

Al doped ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Al(NO3)3·9H2O,

C2H4(OH)2 (fuel)

duration: 10 min with
on/off cycles of 30/10 s;

power: 300 W;
microwave oven

-

0 to 7% atomic
weight percentage

Al doped ZnO,
hexagonal shaped,

diameter: 20–53 nm

[890]

Al doped
ZnO/Sn doped

In2O3

microwave
plasma assisted
chemical vapour

deposition

In2O3:SnO2 = 90:10
wt%, ZnO:Al2O3 = 98:2

wt%,
gas pressure: 25 torr,

hydrogen flow rate: 100
sccm

duration: 5 min;
power: 400–800 W;
microwave plasma

system

- films on glass
substrates [891]

Au/Fe2O3-ZnO
microwave

assisted
annealing

ZnCl2·5H2O, HAuCl4,
FeSO3·7H2O, NaOH,

H2O
power: 700 W 400 ◦C for

4 h in air nanostructures [892]

Ba doped ZnO
microwave

assisted
annealing

Zn(NO3)2·6H2O, BaCl2,
NaOH, H2O

T: 500 ◦C, duration:
30 min; microwave

oven
-

doping range of 0 to
2 at%; nanoparticles

(crystallite sizes:
20–22 nm)

[893]
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Table 14. Cont.

Type of
Product Type of Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Ce–Cu
co-doped ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Ce(NO3)2·6H2O,
Cu(NO3)2·6H2O,

H2O, using urea as
a fuel

duration: 20 min;
power: 800 W;

microwave oven

600 ◦C in air
for 2 h

Zn1−2xCexCuxO (x
= 0.00, 0.01, 0.02,

0.03, 0.04 and 0.05),
crystallite size:

35–46 nm,
heterogeneous

shape

[894]

Co doped ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Co(NO3)2·6H2O,
using citric acid

(C6H8O7) as a fuel
(solution obtained
was heated up to
80-90 ◦C until the
excess water was

removed and a highly
viscous precursor gel

was gained)

T: 900 and 1000 ◦C;
duration: 50 s: power

level: 100%;
microwave oven

(900 W)

- Zn0.90Co0.10O,
micron particle size [895]

Co doped ZnO microwave
sintered

Co doped ZnO from
(Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O,

C2H5OH)

T: 900–1075 ◦C
duration: 15 min

microwave furnace
(850 W)

-

doping range of 0 to
7 mol%, powders,

crystallite size:
36–210 nm

[896]

Cr doped ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Cr2(SO4)3·6H2O

(various
concentrations),

C2H4(OH)2 (fuel)

duration: 8 min;
power 210 W;

microwave oven
(420 W)

500 ◦C in air

Cr doped ZnO
(0.00≤ x ≤0.15),
heterogeneous

nano/microstructures

[897]

ZnO/BiOBr
ZnO

ultrasonic
microwave
synthesis

Bi(NO3)3·5H2O, KBr,
Zn(CH3COO)2·2H2O,

NH4OH, C2H5OH

pH: 8–9; T: 85 ◦C;
duration: 35 min
(discontinuous

ultrasonic irradiation
(2 s sonication and 1 s
interruption); power:

500 W; microwave
and ultrasonic wave

combined reactor

- ZnO/BiOBr grown
on cotton fabric [898]

Zn–ZnO,
ZnO

microwave
plasma

Zn powder and bulk
ZnO, H2, Ar, O2

duration: 15–30 min;
protective gas and

carrier gas: pure H2;
microwave plasma

system (400 W)

-

nanowire-nanocable-nanotube
route has been

designed to
fabricate ZnO

nanotubes with
desired dimensions

[899]

Zn–ZnO
ZnO

microwave
plasma

Zn(CH3COO)2·2H2O,
H2O, air (0.3 L/min)

gases: Ar (flow rate
10 L/m) N2 (flow rate
5 L/m); power: 650 W;

microwave plasma
system

400 ◦C for
1 h in air

ZnO/Zn films on
glass substrate [900]

ZnO–ZrO2,
ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
ZrO(NO3)2·xH2O,
urea (fuel), H2O

duration: 7 min;
power: 850 W;

microwave oven
-

heterogeneous
particles, ZnO-ZrO2
M ratio: 1-1, 2-1, 1-2

[901]

ZnAl2O4/ZnO,
ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Al(NO3)3·9H2O, urea

(fuel), H2O

duration: 1–2 min;
power: 900 W;

microwave oven

1000 ◦C for
1 h in air

ZnAl2O4/ZnO
nanocomposites

with different ZnO
(20, 30, and

40 mol%); flakes and
plates structures of

fine particles
(ZnAl2O4 diameter

55 nm; ZnO
diameter 38 nm)

[902,
903]

Cu doped ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Cu(CH3COO)2·2H2O,

C2H4(OH)2

duration: 10 min;
power: 320 W;

microwave oven
(800 W)

450–750 ◦C

ZnO micro/
nanostructures, wt%
of Cu: 0, 0.8, 1.6, 2.5

and 5%

[904]
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Table 14. Cont.

Type of
Product Type of Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Cu–ZnO–Al2O3

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Cu(NO3)2·3H2O,

Al(NO3)3·9H2O, H2O,
using C2H4(OH)2 as a

fuel(Cu, Zn and Al
nitrates with 3/6/1

molar ratio)

microwave oven - nanoparticles [905]

Cu–ZnO,
ZnO

microwave
assisted

annealing

ZnSO4·7H2O (0.1 M),
CuSO4·5H2O (0.1 M)

NaOH (0.2 M),
ascorbic acid, H2O

microwave oven - heterogeneous
structures [906]

Eu doped ZnO
microwave

assisted
annealing

Zn(CH3COO)2·2H2O,
Eu(NO3)3·5H2O,
NaOH, polyvinyl

alcohol, H2O

pH: 10; duration:
5 min with on-off

cycle (20 s on - 40 s
off); microwave oven

(600 W)

200 ◦C for
3 h in air

doping range of 0 to
0.5 mol%, nanorods [907]

Eu doped ZnO

microwave
induced gel
combustion

process

Zn(NO3)2·6H2O,
Eu2O3, HNO3, using
citric acid (C6H8O7)

and glycine
(NH2CH2COOH) as a

fuel (different fuel
mixtures);

(solution obtained
was heated up to

80 ◦C for 1 h until the
excess water was

removed and a highly
viscous precursor gel

was gained)

duration: 50 s,
microwave oven

900 ◦C for 1
h in air

Zn0.99Eu0.01O
nanoparticles;

diameter: 30 nm
[908]

Fe2O3/ZnO

microwave
sintering

(solid state
reaction)

ZnO powders (1 µm),
γ-Fe2O3 (20–40 nm)

T: 1000–1400 ◦C;
duration: different;
power: 3 kW and
4 kW; microwave

system (2.45 GHz and
28 GHz)

-

Fe2O3(ZnO)x (x = 6,
8, 34); homogeneous

micro- and
nanostructures

[909]

Ga doped ZnO
ultrasonic

microwave
synthesis

Zn(NO3)2·6H2O,
Ga(NO3)3·xH2O,

NaOH

T: 140 ◦C, duration:
30 min,

ultrasonic microwave
reaction system

(150 W)

-
nanoparticles, Ga

mol% content: 1, 2,
3, 5 and 10%)

[910]

Ga doped ZnO
microwave

assisted
annealing

Zn(CH3COO)2·2H2O,
Ga(NO3)3·xH2O,

NaOH, H2O

T: 150 ◦C, duration:
5 min,

microwave reactor
(4 × 800 W)

-

Zn1−xGaxO (x = 0,
0.01, 0.02, 0.03),
heterogeneous
nanoparticles

[911]

In2O3-Ga2O3-ZnO
microwave

assisted
annealing

Zn(CH3COO)2·2H2O,
Ga(NO3)3·xH2O,
In(NO3)3·xH2O,

mono-ethanolamine
(C2H7NO),

methoxyethanol
(solvent)

(various reactant
concentrations)

duration: 2 min;
power: 150–1400 W;

microwave annealing
system

600 ◦C for
0.5 h in air thin films [912]

In2O3-Ga2O3-ZnO

post treatment
process

microwave
assisted

annealing

In2O3-Ga2O3-ZnO
(layer is deposited by
atmospheric pressure

plasma enhanced
chemical vapour

deposition
(AP-PECVD))

duration: 50/100 s;
power: 150/300 W;
microwave oven

- thin films on silicon
wafer [913]

M and Co
co-doped ZnO

microwave
induced

combustion
process

Mn(NO3)2·4H2O,
Co(NO3)2·6H2O,
Zn(NO3)2·6H2O,
Fe(NO3)3·9H2O,
Ni(NO3)2·6H2O,

water, using urea as
a fuel

duration: 20 min
microwave oven

(1000 W)

M0.1Co0.1Zn0.8O (M
= Cu, Fe, Mn, Ni);

nanoparticles
(25–34 nm)

[914]
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Table 14. Cont.

Type of
Product Type of Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

Mg doped
ZnO

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Mg(NO3)2·6H2O

(various
concentrations), vera
plant extract (fuel),

H2O

duration: 10 min;
microwave oven

(800 W)
- 0 and 1.5 wt% Mg

doped ZnO [915]

MgO doped
ZnO

microwave
sintered

ZnO, MgO powders
used with the same
purity and particle

size of (99.9%,
20–30 nm)

T: 1400–1470 ◦C;
duration: 20 min;

power: 1300–1500 W;
microwave reactor

(5000 W)

-

microtubes, lengths
of up to several

micrometres in the
ranges between 150
and 200 µm and an
average diameter of

70 µm

[916]

Mn and Co
co-doped ZnO

microwave
induced

combustion
process

Mn(NO3)2·4H2O,
Co(NO3)2·6H2O,
Zn(NO3)2·6H2O,

water, using urea as
a fuel

duration: 15 min
microwave oven

(800 W)
-

MnxCo0.1Zn0.9−xO
(x = 0.0, 0.05, 0.1,

0.15, and 0.2);
nanoparticles

(24–33 nm)

[917]

Sb2O3-MnO-CoO-
Cr2O3-ZnO

microwave
sintering

ZnO nanopowder
(35 nm), Sb2O3, MnO,

CoO, Cr2O3

T: 1000–1150 ◦C;
duration: 1–60 min;

microwave oven
(2000 W)

- average particle size:
2.1 µm [918]

Sm doped
ZnO

sol-gel-ultrasonic
microwave
sintering

Zn(NO3)2·6H2O,
Sm(NO3)3·6H2O,

polyvinylpyrrolidone
(PVP, MW ≈ 40,000),

diethylene glycol
(DEG),

triethylenetetramine
(TETA), NaOH, H2O

pH: 9; duration:
7 min; power: 700 W;

microwave reactor

400 ◦C for
2 h in air

nanorods, lengths:
200–400 nm, widths:

50–90 nm
[919]

TixOy–ZnO
microwave

sintering(solid
state reaction)

ZnO powder (1 µm),
Ti powder (53 µm)

T: 550–1100 ◦C;
duration: 1 min;

microwave sintering
furnace

-

rods (lengths:
1.5–3 µm, diameters:

0.2–0.5 µm) and
coarser and

irregularly shaped
ZnO whiskers

[920]

ZnO/ZnFe2O4

microwave
induced

combustion
process

Zn(NO3)2·6H2O,
Fe(NO3)2·9H2O,

NaCH3COO (different
concentrations)

using polyethylene
glycol as a fuel

duration: 5 and
10 min; power: 120

and 700 W;
microwave oven

-

nanoparticles, size
in range from

23–54 nm
(SSA = 94.5 m2/g) to

102–209 nm
(SSA = 59.5 m2/g)

[921]

ZnO/multi-walled
carbon

nanotube

microwave
assisted

annealing

Zn(CH3COO)2·2H2O,
multi-walled carbon
nanotubes, (diameter
about 20–50 nm), H2O

power: 300–700 W;
microwave oven - nanocomposites [922]

ZnO–exfoliated
graphene

microwave
assisted

annealing

graphite (modified
Staudenmaiers

method),
Zn(NO3)2·6H2O,

NH4OH, H2O

duration: 5 min;
power: 700 W;

microwave oven
- wrinkles and a

fluff-like structure [923]

ZnO–reduced
graphene

oxide

microwave
assisted

annealing

graphite (modified
Hummers method),

Zn(CH3COO)2·2H2O,
H2O

duration: 5 min;
power: 1000 W;

microwave reactor
-

reduced graphene
oxide sheets with

ZnO nanoparticles
(10–20 nm), SSA =
109.5 m2/g; ZnO

NPs diameter range
of 50 to 100 nm

[924]

ZnO–graphene
oxide

microwave
assisted

annealing

graphite (modified
Staudenmaiers

method),
Zn(NO3)2·6H2O,
NaOH, C2H5OH,

H2O

duration: 3–7.5 min;
power: 800 W;

microwave oven
-

ZnO
microcubes-graphene

oxide; ZnO
nanoflakes-graphene

oxide; ZnO
nanoneedles-graphene

oxide

[925]



Nanomaterials 2020, 10, 1086 97 of 140

Table 14. Cont.

Type of
Product Type of Method Substrates Conditions during

Preparation
Calcination
Parameters Properties Ref.

ZnO–Pr2O3–
CoO–Cr2O3–

K2O

microwave
induced

combustion
process

ZnO (96.7 mol%),
Pr2O3 (2 mol%), CoO

(0.5 mol%), Cr2O3
(0.5 mol%), K2O
(0.3 mol%); agate

mortar in presence of
n-hexane as a fuel

duration: 8 min;
power: 600 W;

microwave oven

1200, 1250
and 1350 ◦C
for 2 h in air

Agglomerated
particles, size

4–6 µm
[926]

expandable
graphite–ZnO

microwave
sintered

exfoliated graphite,
ZnO nanopowder

duration: 5 min;
power: 1000 W;
microwave oven

-
graphite-ZnO

nanocomposite
powders

[927]

6. Conclusions

ZnO is a multifunctional material, among others thanks to its semi-conductor, optical, biological,
antibacterial, piezoelectric properties. Probably, to the surprise of many, the popularity of ZnO
contyinues to grow, which is mainly caused by the development of new methods of obtaining ZnO
NMs. These methods permit a synthesis of various ZnO NMs, e.g., owing to the possibility to control the
shape and size, and to modify the chemical composition (dopants, composites etc.), which defines their
properties and enables their use in new applications. ZnO NMs are also promising unique components
for producing various innovative devices. However, for the potential of all ZnO NMs to be fully tapped
in consumer products, numerous comprehensive tests are still needed. Nowadays, the microwave
heating technology is already a classic method for fabrication of distinct chemical compounds and
materials, including ZnO NMs. This has become possible thanks to the availability of new professional
microwave apparatus on the market, which is continually improved by the manufacturers to meet the
users’ requirements. A microwave apparatus can be encountered increasingly often in laboratories,
the industry, and virtually all households. Microwave heating is environment-friendly and has been
classified as a green chemistry approach. The main advantages of microwave heating include speed,
homogeneity, and purity (contactless method).

This comprehensive review describes the microwave synthesis of ZnO NMs (pure, doped,
composites). We concentrated in particular on reactants, process parameters and morphologies
of the obtained products. The microwave synthesis of ZnO NMs was divided into three primary
groups: hydrothermal, solvothermal and hybrid methods. Hybrid methods include such methods
as: ultrasonic microwave synthesis, microwave assisted combustion synthesis, microwave assisted
annealing, microwave assisted sintering, and microwave vapour deposition. Statistics of the use of
reactants were presented. The overall results point that the microwave synthesis of ZnO NMs has an
enormous potential that enables obtaining a wide range of product morphologies, beginning with
quantum dots, to core-shell structures and hierarchical structures, and ending with films on substrates
(surface modification). The discovery and explanation of some of the mechanisms of microwave
syntheses have made it possible to obtain ZnO NMs with controlled properties (among others size,
shape) and has eliminated the unrepeatability of syntheses. The present review indicates that the
microwave synthesis of ZnO NMs is an extremely vast research topic, with many phenomena yet to be
explained. Moreover, new issues (effects, mechanisms) related to the microwave synthesis of ZnO
NMs certainly remain to be discovered.

Unfortunately, the cited literature does not provide examples of the achieved daily capacity of
the microwave synthesis of ZnO NMs. Nevertheless, based on our many years of experience with
the microwave synthesis of nanomaterials, we have become convinced in practice that, thanks to
microwave solvothermal synthesis, ca. 100 g of ZnO NPs can be achieved daily.
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64. Rogowska-Tylman, J.; Locs, J.; Salma, I.; Woźniak, B.; Pilmane, M.; Zalite, V.; Wojnarowicz, J.;
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410. Szałaj, U.; Świderska-Środa, A.; Chodara, A.; Gierlotka, S.; Łojkowski, W. Nanoparticle size effect on water
vapour adsorption by hydroxyapatite. Nanomaterials 2019, 9, 1005. [CrossRef] [PubMed]

411. Opalinska, A.; Malka, I.; Dzwolak, W.; Chudoba, T.; Presz, A.; Lojkowski, W. Size-dependent density of
zirconia nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 27–35. [CrossRef] [PubMed]

412. Opalinska, A.; Leonelli, C.; Lojkowski, W.; Pielaszek, R.; Grzanka, E.; Chudoba, T.; Matysiak, H.;
Wejrzanowski, T.; Kurzydlowski, T. Effect of pressure on synthesis of Pr-doped zirconia powders produced
by microwave-driven hydrothermal reaction. J. Nanomater. 2006, 2006, 98769. [CrossRef]

413. Falk, G.S.; Borlaf, M.; López-Muñoz, M.J.; Fariñas, J.C.; Rodrigues Neto, J.B.; Moreno, R. Microwave-assisted
synthesis of TiO2 nanoparticles: Photocatalytic activity of powders and thin films. J. Nanopart. Res. 2018, 20,
23. [CrossRef]

414. Bonamartini Corradia, A.; Bondiolia, F.; Ferrarib, A.M.; Fochera, B.; Leonelli, C. Synthesis of silica
nanoparticles in a continuous-flow microwave reactor. Powder Technol. 2006, 167, 45–48. [CrossRef]

415. He, D.; Wan, G.; Hao, H.; Chen, D.; Lu, J.; Zhang, L.; Liu, F.; Zhong, L.; He, S.; Luo, Y. Microwave-assisted
rapid synthesis of CeO2 nanoparticles and its desulfurization processes for CH3SH catalytic decomposition.
Chem. Eng. J. 2016, 289, 161–169. [CrossRef]

416. Krishnakumar, T.; Pinna, N.; Prasanna Kumari, K.; Perumal, K.; Jayaprakash, R. Microwave-assisted synthesis
and characterization of tin oxide nanoparticles. Mater. Lett. 2008, 62, 3437–3440. [CrossRef]

417. Koltsov, I.; Przesniak-Welenc, M.; Wojnarowicz, J.; Rogowska, A.; Mizeracki, J.; Malysa, M.; Kimmel, G.
Thermal and physical properties of ZrO2-AlO(OH) nanopowders synthesised by microwave hydrothermal
method. J. Therm. Anal. Calorim. 2017, 13, 2273–2284. [CrossRef]

418. Koltsov, I.; Wojnarowicz, J.; Nyga, P.; Smalc-Koziorowska, J.; Stelmakh, S.; Babyszko, A.; Morawski, A.W.;
Lojkowski, W. Novel photocatalytic nanocomposite made of polymeric carbon nitride and metal oxide
nanoparticles. Molecules 2019, 24, 874. [CrossRef] [PubMed]

419. Zeng, G.; Huang, L.; Huang, Q.; Liu, M.; Xu, D.; Huang, H.; Yang, Z.; Deng, F.; Zhang, X.; Wei, Y.
Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via
microwave irradiation. Appl. Surf. Sci. 2018, 459, 588–595. [CrossRef]

420. Hitchcock, R.T. Radio-Frequency and Microwave Radiation, 3rd ed.; American Industrial Hygiene Association:
Fairfax, VA, USA, 2004; ISBN 978-1931504553.

421. Vollmer, M. Physics of the microwave oven. Phys. Educ. 2004, 39, 74–81. [CrossRef]

http://dx.doi.org/10.1007/s10854-018-8964-9
http://dx.doi.org/10.1088/1361-6528/aaa0ef
http://www.ncbi.nlm.nih.gov/pubmed/29231173
http://dx.doi.org/10.1515/reveh-2018-0083
http://www.ncbi.nlm.nih.gov/pubmed/31141493
http://dx.doi.org/10.1088/1748-9326/aaeea7
http://dx.doi.org/10.1088/1748-9326/ab299b
http://dx.doi.org/10.1002/slct.201700011
http://dx.doi.org/10.1021/cr400366s
http://dx.doi.org/10.1021/acs.langmuir.7b01541
http://www.ncbi.nlm.nih.gov/pubmed/29215896
http://dx.doi.org/10.3762/bjnano.7.153
http://www.ncbi.nlm.nih.gov/pubmed/28144510
http://dx.doi.org/10.3390/nano9071005
http://www.ncbi.nlm.nih.gov/pubmed/31336907
http://dx.doi.org/10.3762/bjnano.6.4
http://www.ncbi.nlm.nih.gov/pubmed/25671149
http://dx.doi.org/10.1155/JNM/2006/98769
http://dx.doi.org/10.1007/s11051-018-4140-7
http://dx.doi.org/10.1016/j.powtec.2006.05.009
http://dx.doi.org/10.1016/j.cej.2015.12.103
http://dx.doi.org/10.1016/j.matlet.2008.02.062
http://dx.doi.org/10.1007/s10973-017-6780-8
http://dx.doi.org/10.3390/molecules24050874
http://www.ncbi.nlm.nih.gov/pubmed/30832216
http://dx.doi.org/10.1016/j.apsusc.2018.07.144
http://dx.doi.org/10.1088/0031-9120/39/1/006


Nanomaterials 2020, 10, 1086 117 of 140

422. International Telecommunication Union. Available online: www.itu.int/en/Pages/default.aspx (accessed on
11 January 2020).

423. ITU-R V.li-8 (08/2015) Nomenclature of the Frequency and Wavelength Bands Used in Telecommunications.
Available online: www.itu.int/rec/R-REC-V.431-8-201508-I/en (accessed on 11 January 2020).

424. IEC. Part 713: Radiocommunications: Transmitters, receivers, networks and operation. In International
Electrotechnical Vocabulary (IEV); IEC: Geneva, Switzerland, 1988.

425. Official Conference Website “World Radiocommunication Conferences (WRC)”. Available online: www.itu.
int/en/ITU-R/conferences/wrc/Pages/default.aspx (accessed on 11 January 2020).

426. Official Website of the Ministry of Infrastructure (Poland). Available online: www.gov.pl/web/infrastruktura
(accessed on 11 January 2020).

427. Torgovnikov, G.I. Dielectric Properties of Wood and Wood-Based Materials, 1st ed.; Springer: Berlin, Germany,
1993; ISBN 978-3-642-77455-3.

428. Rana, K.; Rana, S. Microwave reactors: A brief review on its fundamental aspects and applications. Open
Access Libr. J. 2014, 1, 1–20. [CrossRef]

429. Mohammadi, E.; Aliofkhazraei, M.; Hasanpoor, M.; Chipara, M. Hierarchical and complex ZnO nanostructures
by microwave-assisted synthesis: Morphologies, growth mechanism and classification. Crit. Rev. Solid State
Mater. Sci. 2018, 43, 475–541. [CrossRef]

430. Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2,
1358–1374. [CrossRef]

431. Falciglia, P.P.; Roccaro, P.; Bonanno, L.; De Guidi, G.; Vagliasi, F.G.A.; Romano, S. A review on the microwave
heating as a sustainable technique for environmental remediation/detoxification applications. Renew. Sustain.
Energy Rev. 2018, 95, 147–170. [CrossRef]

432. Gaba, M.; Dhingra, N. Microwave chemistry: General features and applications. Indian J. Pharm. Educ. Res.
2011, 45, 175–183.

433. Leadbeater, N.E. Microwave Heating as a Tool for Sustainable Chemistry, 1st ed.; CRC Press: Boca Raton, FL,
USA, 2011. [CrossRef]

434. Leadbeater, N.E.; McGowan, C.B. Laboratory Experiments Using Microwave Heating, 1st ed.; CRC Press:
Boca Raton, FL, USA, 2013. [CrossRef]

435. Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. 2004, 43, 625–6284.
[CrossRef]

436. Kappe, C.O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry, 2nd ed.; Wiley-VCH:
Weinheim, Germany, 2012.

437. Cravotto, G.; Carnaroglio, D. Microwave Chemistry, 1st ed.; De Gruyter: Boston, MA, USA, 2017;
ISBN 9783110479935.

438. Horikoshi, S.; Serpone, N. Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, 1st ed.;
Wiley-VCH: Weinheim, Germany, 2013; ISBN 9783527331970.

439. Yang, G.; Park, S.-J. Conventional and microwave hydrothermal synthesis and application of functional
materials: A review. Materials 2019, 12, 1177. [CrossRef]

440. Yang, G.; Park, S.-J. Author response to comment on: Conventional and microwave hydrothermal synthesis
and application of functional materials: A review. Materials 2019, 12, 3640. [CrossRef] [PubMed]

441. Jalouli, B.; Abbasi, A.; Musavi Khoei, S.M. A comment on: “Conventional and microwave hydrothermal
synthesis and application of functional materials: A review”. Materials 2019, 12, 3631. [CrossRef] [PubMed]

442. Horikoshi, S.; Schiffmann, R.F.; Fukushima, J.; Serpone, N. Microwave Chemical and Materials Processing, 1st ed.;
Springer: Singapore, 2018; ISBN 978-981-10-6465-4.

443. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—A review. Tetrahedron
2001, 57, 9225–9283. [CrossRef]
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496. Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Łojkowski, W. Current trends in the development of microwave

reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals 2018, 8, 379.
[CrossRef]

497. Buttress, A.J.; Hargreaves, G.; Ilchev, A.; Monti, T.; Sklavounou, A.; Katrib, J.; Martin-Tanchereau, P.;
Unthank, M.G.; Irvine, D.J.; Dodds, C.D. Design and optimisation of a microwave reactor for kilo-scale
polymer synthesis. Chem. Eng. Sci. X 2019, 2, 100022. [CrossRef]

http://dx.doi.org/10.1002/crat.201300355
http://dx.doi.org/10.1016/j.powtec.2007.12.012
http://dx.doi.org/10.1039/9781782623632
http://dx.doi.org/10.1201/b17953
http://dx.doi.org/10.1055/s-2002-33344
http://dx.doi.org/10.1016/j.mtnano.2020.100076
http://dx.doi.org/10.1016/j.fuel.2020.117022
http://dx.doi.org/10.1016/j.jmatprotec.2007.11.263
http://dx.doi.org/10.1007/s12034-009-0001-4
http://dx.doi.org/10.2147/OTT.S81734
http://www.ncbi.nlm.nih.gov/pubmed/26185452
http://dx.doi.org/10.3390/polym4031462
http://dx.doi.org/10.1016/j.cattod.2013.11.054
http://dx.doi.org/10.1021/ma2004794
http://dx.doi.org/10.1038/421571a
http://dx.doi.org/10.1038/nrd1926
http://dx.doi.org/10.3390/catal9090753
http://dx.doi.org/10.1002/tcr.201800059
http://dx.doi.org/10.3390/cryst8100379
http://dx.doi.org/10.1016/j.cesx.2019.100022


Nanomaterials 2020, 10, 1086 120 of 140

498. Priecel, P.; Lopez-Sanchez, J.A. Advantages and limitations of microwave reactors: From chemical synthesis
to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng. 2019, 7, 3–21. [CrossRef]

499. Mitani, T.; Hasegawa, N.; Nakajima, R.; Shinohara, N.; Nozaki, Y.; Chikata, T.; Watanabe, T. Development of
a wideband microwave reactor with a coaxial cable structure. Chem. Eng. J. 2016, 299, 209–216. [CrossRef]

500. Leonelli, C.; Veronesi, P. Microwave reactors for chemical synthesis and biofuels preparation. In Production
of Biofuels and Chemicals with Microwave, 1st ed.; Fang, Z., Smith, R.L., Jr., Qi, X., Eds.; Springer: Dordrecht,
The Netherlands, 2015; pp. 17–40.

501. Kappe, C.O. My twenty years in microwave chemistry: From kitchen ovens to microwaves that aren’t
microwaves. Chem. Rec. 2019, 19, 15–39. [CrossRef]

502. Wojnarowicz, J.; Chudoba, T.; Gierlotka, S.; Lojkowski, W. Effect of microwave radiation power on the size
of aggregates of ZnO NPs prepared using microwave solvothermal synthesis. Nanomaterials 2018, 8, 343.
[CrossRef]
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on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci.
2013, 398, 152–160. [CrossRef]

686. Rezaei, M.; Habibi-Yangjeh, A. Microwave-assisted preparation of Ce-doped ZnO nanostructures as an
efficient photocatalyst. Mater. Lett. 2013, 110, 53–56. [CrossRef]

687. Shulga, A.; Butusov, L.A.; Chudinova, G.K.; Sheshko, T.F. Microwave-assisted synthesis of cerium doped
ZnO nanostructures and its optical properties. J. Phys. Conf. Ser. 2020, 1461, 012162. [CrossRef]
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