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Abstract: The aim of this work was to study the effect of the applied chemical reaction stimulation
method on the morphology and structural properties of zinc oxide nanoparticles (ZnONPs). Various
methods of chemical reaction induction were applied, including microwave, high potential, con-
ventional resistance heater and autoclave-based methods. A novel, high potential-based ZnONPs
synthesis method is herein proposed. Structural properties–phase purity, grain size–were examined
with XRD methods, the specific surface area was determined using BET techniques and the mor-
phology was examined using SEM. Based on the results, the microwave and autoclave syntheses
allowed us to obtain the desired phase within a short period of time. The impulse-induced method is
a promising alternative since it offers a non-equilibrium course of the synthesis process in an highly
energy-efficient manner.

Keywords: zinc oxide nanoparticles; chemical reactors; hydrothermal synthesis

1. Introduction

Zinc oxide nanoparticles are known for their broad range of applications. They are
widely used in the pharmaceutical industry due to their antifungal properties. They are also
used as an ingredient in toothpastes and as a material for dentistry. In the paint industry,
ZnONPs are used in the production of white pigment, so-called zinc white. The ceramics
industry uses zinc oxide as an ingredient in ceramic masses, glazes and fluxes. Zinc
oxide nanoparticles are used as a catalyst in organic synthesis. In the electronics industry,
ZnONPs are used to produce semiconductors [1–5], varistors [6–12], sensors [13–18] and
transistors [19–24]. Due to the wide energy gap, 3.37 eV zinc oxide is used as a luminescent
material in optoelectronics [25–30]. Application of superfine (nanometric) ZnONPs and
thin films in the production of coatings for UV protective glasses and polymer coatings
have been in use for a long time [31–33].

ZnONPs can be obtained by several methods. These include: the oxidation of metallic
zinc [34–36], sol-gel [37–40], co-precipitation [41–44], gas condensation [45–48], mechano-
chemical method [49–52], solvothermal method [53–56] and hydrothermal method [57–64].
Among the known methods for producing nanomaterials, preparation of zinc oxide from
selected zinc salts and mineralizer may be an example of a simple synthesis resulting in a
ceramic raw material. The resulting zinc hydroxide can be transformed by calcination or
heated in water at a pressurized vessel (hydrothermal synthesis). Hydrothermal synthesis
is carried out in a closed vessel in order to avoid contamination of the surroundings with
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nanopowders, and is carried out at lower temperatures than calcination, which prevents
sintering of the nanopowders. From the literature and our own research, the correct
structure of zinc oxide in the hydrothermal reaction is formed at the temperature not
exceeding 100 ◦C at a pressure of ca. 0.15 MPa [65].

Several works have demonstrated [66–70] the benefits of using microwave reactors
in hydrothermal syntheses. Above all, the use of microwaves provides uniform heating
of the solution. Moreover, the high reaction speeds of inorganic syntheses reactions in a
microwave field are often discussed in terms of the so-called specific microwave effect.
Many chemical syntheses under the influence of microwaves proceed more efficiently and
faster as compared to traditional methods [66–70]. Similarly, fast and in-volume heating
of reaction substrates can be ensured with the application of current flow [57,66]. Our
previous study revealed that ZnONPs can also be obtained using high voltage pulses [71].
Thus, in terms of scalability of the process, the choice of a proper synthesis method has
to be considered. A systematic comparative study of hydrothermal ZnONPs synthesis
methods is hereby conducted [72–74].

2. Materials and Methods
2.1. Materials

The following substances were used for hydrothermal synthesis:

• Zinc chloride–ZnCl2 (99.9%, anhydrous)–Sigma-Aldrich
• Potassium hydroxide–KOH (pure)–Chempur, Poland

2.2. Methods
2.2.1. Microwave Reactor

The obtained zinc hydroxide suspension was poured into reaction vessels. ZnONPs
were synthesized via hydrothermal synthesis in a microwave field using a microwave
reactor (Figure 1) (ERTEC, Poland). This reactor consisted of a pressure chamber, a PTFE
reaction vessel with a sealed lid and a pressure diaphragm as a burstable pressure fuse. The
chamber was made of acid-resistant steel and cooled with water. The occlusion was of a
bayonet type, and pressure measurement was controlled by measuring the deflection of disc
springs. Electromagnetic field in the pressure chamber was generated using waveguides.
The experimental setup was controlled using a computer and dedicated software—it
allowed for the adjusting of power thresholds and pressure limits, along with temperature
and pressure control throughout the process [66–70,75].
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The experiment in the microwave reactor proceeded as follows: The prepared solu-
tion was poured into a PTFE reaction vessel with a capacity of 110 mL. Several process
parameters required optimization-process duration (heating and cooling time), maximum
temperature and the pressure, at which the process needed to proceed. An important
parameter was also the microwave power. Overall hydrothermal synthesis using the mi-
crowave reactor process did not exceed 30 min. After completion of the processes, the
product was pressure filtered and washed repeatedly with distilled water. The purified
material was then vacuum dried (70 ◦C/24 h).

2.2.2. Autoclave

The autoclave (Figure 2) was heated by electric heating spiral heating coils placed in
the walls of the vessel. The capacity of the reaction vessel was 2 L. Inside of the autoclave
there was a PTFE insert, in which the reaction substrates were placed. With this method,
it took only 15 min to obtain the required reaction temperature. The total reaction time
reached 3 h due to the thermal inertia of the entire system. During these experiments, the
autoclave with a PTFE reaction vessel (CORTEST, Willoughby, OH, USA) was used.
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Figure 2. Autoclave system diagram.

2.2.3. Impulse Reactor

Pulsed reactors for chemical syntheses are little known in industrial practice and
literature. The use of electrodes immersed in solution is mostly limited to galvanic pro-
cesses in coating fabrication. Meanwhile, independently from classical electrochemistry,
applications of pulsed fields are being developed, generating high electric field strengths
in liquids. One of the applications of pulsed reactors is the sterilization beverages by the
PEF (pulsed electric field) method. The use of electric pulses to conduct chemical reactions
has been patented [71]. In our experiments, short electric pulses of between 50 ns, 20 ms
of 0–30 kV range and energies up to 120 J were induced at a frequency of 1 Hz between
electrodes immersed in the reaction substrates (Figure 3). The use of this type of excitation
in a chemical reactor enabled us to obtain the effect of volumetric excitation, similar to the
microwave reactor method.

2.2.4. ERTEC Reactor with Meander Heater and Volume Type Joule

In order to compare the different ways of providing energy required to perform a
chemical reaction, the microwave reactor was modified. The reactor was suitably adapted
for heating using the Joule phenomenon or conventional heating by means of an electric
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immersion heater in the shape of a meander. The vessels and the shape of the reactor
remained unchanged.
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Figure 3. Impulse reactor: (A) schematic; (B) inside the reactor.

The heaters of both types were made in such a way as to provide similar power values
as in the case of microwave heating. To stabilize the power level, electronic regulators used
in the case of microwave power corresponded to a constant average value of the magnetron
current. A power level of 300W was maintained in all experiments with an accuracy better
than 5%.

Heater surfaces, in order to increase their resistance to corrosion, were covered with
a golden layer of 30 µm thickness. Moreover, the reaction vessel was equipped with a
special PTFE lid, through which a system of two stainless steel coaxial tubes was passed
to provide the electrical connection. The middle pipe, in addition to being an electrical
conductor, acted as a screen for the fiber optic temperature sensor (Nortech, Virginia, MN,
USA). Pressure measurements were carried out both by measuring the deflection disk
springs according to DIN 2993 installed in the original reactor, as well as by measuring
the deflection of the plate springs using a classical membrane pressure transducer (ZAP
S.A PL, PN-5/M/42057, Ostrów Wielkopolski, Poland) connected to the lid of the reaction
vessel by means of a capillary tube. Figure 4 shows a schematic of the heaters used in the
zinc oxide nanoparticles synthesis.
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2.2.5. XRD Analysis

A Siemens D-5000 X-ray diffractometer (Siemens-Bruker Corporation, Karlsruhe,
Germany) was used to determine the phase composition, crystallographic lattice and to
identify the coordinates of atoms in the elementary cells (by the Rietveld method) [76–78].
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2.2.6. Density and Specific Surface Area (BET)

Specific surface of the obtained materials was determined with BET technique
(Gemini 2360, Micromeritics, Norcross, GA, USA). Powder density was calculated/determined
with the pycnometric method and was an important indicator of obtained material purity.
Specific surface area and density measurements allowed for determination of the powder
grain size, following the formula:

d =
6

ρ·S ∗ 1000 (1)

where d—grain size [nm], ρ—powder density [g/cm3], S—powder specific surface area [m2/g],
the number 6 is taken for nanoparticles with a spherical shape.

2.2.7. SEM Analysis

Microstructure studies of nanoparticles were performer using scanning microscopy
with a Zeiss LEO1530 (Siemens-Bruker Corporation, Germany) equipped with a Zeiss
Gemini column.

3. Experiments and Results

All solutions were prepared with the same route, only the method of chemical reaction
stimulation was modified. Aqueous solutions of zinc chloride and potassium hydroxide
were mixed, leading to an ion-exchange reaction:

ZnCl2 + 2KOH + H2O→ Zn(OH)2 + 2KCl + H2O (2)

Zn(OH)2 + KCl + H2O→ ZnO + KCl + 2H2O (3)

After each synthesis, the product was filtered and rinsed several times with distilled
water to remove excessive ions, following with isopropyl alcohol rinsing to reduce the
agglomeration. Afterwards, the product was vacuum dried at 100 ◦C for 24 h. The
dried product was subsequently characterized with XRD analysis, BET method, density
measurements and SEM.

Table 1 presents the results of measurements of the specific surface of powders ob-
tained in the studied reactors. The grain size measured by BET method and on the basis of
XRD is also presented.

Table 1. Results of analyses the zinc oxide nanoparticles.

Stimulaton Methods Time
[min]

Pressure
[MPa]

Temperature
Ts/Te [◦C] Shape Color BET

[nm]

Average
Crystallite

Size
[nm]

Density
[g/cm3] Phases

Microwave reactor 3 1 25/80 Cubic White 37 25 5.60 ± 0.02 ZnO
Electric autoclave 15 20 25/200 Plates White 39 24 5.60 ± 0.03 ZnO

Meander-type heater 3 1 25/78 Needles/plates Gray 32 20 5.52 ± 0.02 ZnO + simonkolleite
Joule-type heater 4 2 26/88 Plates/spheres Beige 40 32 5.50 ± 0.04 ZnO + simonkolleite

Impulse reactor 0.3 1 25/50 Flowers White 46 40 5.60 ± 0.05 ZnO + unknown
phase

Ts starting temperature; Te ending temperature.

Figure 5 shows the results of the XRD analysis of powders obtained under different
conditions. Additional phases, such as hydrozincite (Zn5(CO3)2(OH)6) and simonkolleite
(Zn5(OH)8Cl2·H2O) can be noticed. A single-phase product (ZnO) was obtained using
a microwave reactor and an autoclave stimulation method. The blue circle indicates
additional phases.
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From the SEM images (Figure 6), it can be seen that depending on the applied chemical
reaction technique applied the obtained zinc oxide nanoparticles is characterized by varied
morphology. We can distinguish several morphological forms formed as a result of agglom-
eration. The product obtained in the microwave reactor revealed a cubic structure, while
in the autoclave pictured lamellar structure. Using a meander-type heater the product
obtained had a needle and plate structure. The product of Joule heating was very similar–
plates and spheres. The product from the pulse reactor—flowers—also had an interesting
morphology. It should be noted that the size of these structures were much larger than the
size of crystals determined by XRD methods. It follows that these are agglomerates built
from many grains.Materials 2022, 15, x FOR PEER REVIEW 7 of 13 
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4. Discussion

As can be seen from Table 1, all the synthesis methods studied lead to the formation
of powders with medium grains in the range of 30–50 nm. All of the synthesis reactions
were conducted at temperatures below 100 ◦C with the exception of synthesis in an auto-
clave, where the temperature reached 200 ◦C. In addition, when heated using the volume
effect, Joule effect and electric heating, two- or three-phase products with simonkolleite or
hydrozincite were formed. When heating by means of heaters the product was strongly con-
taminated due to the corrosion of electrodes in an alkaline environment. Only microwave
heating and synthesis in an autoclave resulted in a pure phase. In the case of the pulse
reactor, traces of an unidentified phase were found. The purity of the product obtained in
the case of microwave heating and in the autoclave clearly results from the electrodeless
way of heating. The microwave energy penetrates through a clean Teflon vessel directly
into the reaction substrates, heating them quickly and evenly. In an autoclave with a Teflon
insert, where the energy is supplied from outside the reactor, the heating process is much
slower but also occurs without generating contamination. In the case of stimulation reaction
with high voltage electrical impulses, a pure product is probably produced because the
average reaction temperature is very low, the lowest of all the measured during the tests,
so the electrode material was not easily dissolved. In addition, the erosion of the electrodes
in strong electrolytes under pulsed current is always less than with direct current.

Some of the key parameters to the growth of crystallites are the process temperature,
pressure, chemical reagents and process conditions, such as the use of different techniques
for stimulating chemical reactions. Even a small change in technique causes huge changes
both in the growth process itself (e.g., decomposition of the precursor) and in the parameters
of the resulting material. Such material can take on various morphologies, such as flakes,
columns or beads, which can form agglomerates (Figure 7). For zinc oxide particles, the
correct morphology is a hexagonal structure.
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Another important parameter that affects the morphology of zinc oxide is the environ-
ment in which the synthesis is carried out, namely the pH (Figure 8).

Scanning microscopy images revealed that the reaction product is agglomerated in
the form of needles, petals or flowers. These structures are made up of tiny crystallites of
ZnO, which are attracted to each other in the suspension or during rinsing. Morphology
formation by different synthesis methods requires further investigation. The difference
in the morphology of the resulting products may be due to the heating method. In the
microwave reactor and in the autoclave, heating was supplied from outside. In both cases,
the heating medium was not in direct contact with the solution. As for the synthesis in
the pulse reactor and during meander and Joule type heating, the heating element was
immersed in the solution. The direct contact of the heating element with the solution can
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affect the morphology and purity of the obtained product. From the analyses, it can be
seen that traces of simonkolleite and hydrozincite were obtained in addition to phase-pure
zinc oxide.
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The morphology of zinc oxide has a significant impact on its physicochemical proper-
ties, such as photocatalytic, optical, electrical and antibacterial. As a result, it can be used
in many industrial fields.

The shortest reaction times and the lowest process temperatures were observed when
stimulated with high voltage pulses. Investigating the nature of this surprising discovery
encourages the continuation of experimental work in the field of impulse synthesis of zinc
oxide nanoparticles.

A novel method for the synthesis of oxide nanoparticles in a pulsed reactor has
important advantages:

• The product has high purity and density close to the theoretical value-only traces of an
unidentified phase were found, which should be minimized by the choice of optimal
electrode material;

• The relatively high specific surface area of the powder allows obtaining zinc oxide
nanoparticles at an unprecedentedly low temperature of approx. 25 ◦C.

Joule heating, on the other hand, is attractive because of its simplicity–energy is saved
for heating the vessel and the process is interrupted when current flow is interrupted. Patent
claims have been filed for both synthesis methods [71]. Contamination of the nanopar-
ticles has been observed as a result of corrosion of the electrodes, and deposition of the
nanoparticles on the electrodes, which sometimes altered the current and voltage in the re-
action substrates during synthesis. Corrosion and unfavorably large temperature gradients
occurred during heating with a conventional resistance heater with a meander shape.

As can be seen from the above, the most promising from the scientific and practical
point of view is high-voltage pulse synthesis, because on the one hand, the nature of this
phenomenon requires investigation, while on the other hand, the results of laboratory
syntheses indicate the possibility of direct implementation of this technique to industrial
practice. However, any laboratory process must undergo pilot-scale verification before
it reaches industry. From the point of view of production of nanoparticles of the highest
quality and purity, the most promising is the hydrothermal method with microwaves as
the energy source.

5. Conclusions

Zinc oxide nanoparticles obtained by hydrothermal synthesis using several reactors, in
which the energy for the reaction was supplied by microwaves, electric current, volumetric
Joule heating and via high voltage pulses and heating the entire autoclave. In all of the
conducted syntheses with the exception of the classical autoclave, the temperature process
did not exceed 100 ◦C. In the autoclave the temperature reached 200 ◦C. Due to the high
thermal inertia of the autoclave its application to fast chemical syntheses is impossible.
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To our knowledge, we are the first team to obtain zinc oxide nanoparticles as a result
of syntheses induced by high voltage pulses. As a result of the application of the pulses, the
average reaction temperature in did not exceed 50 ◦C in any of our experiments. Syntheses
driven by the Joule heating method encountered the obstacle of corrosion of the electrodes
and deposition of the reaction product on them.

It was found that nanoparticles with phase composition nanopowders with phase
compositions closest to pure ZnO were obtained during microwave syntheses and in a
classical autoclave. The powders produced in other reactors were characterized.

In addition to the zinc oxide content, powders produced in other reactors were char-
acterized by the presence phases—simonkolleite and hydrozincite. Application of the
microwave reactor allowed us to shorten the reaction time by several times and, at the
same time, to obtain the purest product. It is this type of reactor that we will develop for
the implementation experimental production line of zinc oxide nanoparticles.
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