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Abstract: Synthetic calcium phosphates, e.g., hydroxyapatite (HAP) and tricalcium phosphate (TCP),
are the most commonly used bone-graft materials due to their high chemical similarity to the natural
hydroxyapatite—the inorganic component of bones. Calcium in the form of a free ion or bound
complexes plays a key role in many biological functions, including bone regeneration. This paper
explores the possibility of increasing the Ca2+-ion release from HAP nanoparticles (NPs) by reducing
their size. Hydroxyapatite nanoparticles were obtained through microwave hydrothermal synthesis.
Particles with a specific surface area ranging from 51 m2/g to 240 m2/g and with sizes of 39, 29, 19,
11, 10, and 9 nm were used in the experiment. The structure of the nanomaterial was also studied by
means of helium pycnometry, X-ray diffraction (XRD), and transmission-electron microscopy (TEM).
The calcium-ion release into phosphate-buffered saline (PBS) was studied. The highest release of
Ca2+ ions, i.e., 18 mg/L, was observed in HAP with a specific surface area 240 m2/g and an average
nanoparticle size of 9 nm. A significant increase in Ca2+-ion release was also observed with specific
surface areas of 183 m2/g and above, and with nanoparticle sizes of 11 nm and below. No substantial
size dependence was observed for the larger particle sizes.

Keywords: hydroxyapatite (HAP); nanoparticles; microwave hydrothermal synthesis; calcium-ion
release; solubility; size effect; specific surface area

1. Introduction

Over the past years, the incidence of diseases and injuries of the skeletal system
has significantly increased worldwide. These conditions are caused by the aging of the
population, as well as by congenital defects, sports, traffic injuries, and other diseases [1–3].
The aim of tissue engineering is to accelerate bone-tissue regeneration and to enable the
filling of bone defects with natural bone when bone cannot be regenerated by natural
means. Treatments using biological agents, stem cells, biomimetic scaffolds, or suitable
implants provide increasingly effective and reliable strategies for creating bone tissue and
regenerating large defects, thus improving the quality of patients’ lives [3].

Bone tissue is composed of 60% inorganic constituents (mainly nanohydroxyapatite),
30% the organic constituent (proteins), and 10% water [4]. Natural nanohydroxyapatite
contains numerous impurities in the form of potassium, magnesium, strontium, sodium,
chloride, fluoride, and carbonate [4]. The second inorganic constituent of bone is whitlockite
(Ca18Mg2(HPO4)2(PO4)12) [5,6]. The organic part of bone is composed mainly of type I
collagen (ca. 90%) and non-collagen proteins [7,8]. Synthetic calcium phosphates, e.g.,
hydroxyapatite (HAP, Ca10(PO4)6(OH)2), calcium α-, and β-triphosphate (TCP, Ca3(PO4)2),
are the subjects of continuing interest in the field of tissue engineering due to their high
chemical similarity to natural hydroxyapatite [9–12]. Recent research has focused on the
artificial production of nano-HAP that is as close as possible to natural HAP in terms of
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structure [13]. Numerous studies have confirmed the biocompatibility of nano-HAP and
its usefulness in bone-tissue regeneration [14–26].

Calcium in the form of free ions or bound complexes plays a key role in many biologi-
cal functions. The amount of calcium in the adult body is, on average, 1000 g. This element
plays a key role in the mineralization of the skeleton and in other biological processes [27].
Calcium (Ca2+) is an intracellular messenger that controls several cellular processes, such
as cell proliferation, gene transcription, and muscle contraction. The signals of Ca2+ in-
volve a number of homeostatic and sensory mechanisms. These Ca2+ signals may induce
the expression of genes that are related to bone-cell proliferation in cells [28]. In vitro
studies have shown that the calcium contained in bone-regrowth scaffolds supports the
increased adhesion, proliferation, and differentiation of osteoblastic MG-63 cells. Further,
calcium signals promote osteoblast function through calmodulin, and through the activa-
tion of extracellular-signal-regulated kinase 1/2 (ERK1/2) and of the intracellular signaling
pathway, which is important in regulating the cell cycle (PI3K/Akt pathways) [28–30].
In addition, calcium signals from the endoplasmic reticulum (ER) and the activation of
calcineurin cause the nuclear factor of activated T cells, especially in the introduction of
the IL-2 or IL-4 gene (NFAT2)’s dephosphorylation and osteoclastic gene expression [31].
The expression and control of osteoclastic genes indicates the role of calcium in bone re-
sorption and homeostasis [31,32]. In vivo studies have shown that Ca2+ ions released from
HA/TCP-composite scaffolds increase bone formation in rat calvarial bone defects [33]. In
addition, Ca2+-coated titanium implants resulted in increased bone density and osteointe-
gration in a sheep-tibial-bone model [28,30–32]. Thus, the control of the Ca2+-ion release to
induce bone-tissue repair is necessary for the appropriate application of calcium-phosphate
materials in tissue engineering and regenerative medicine.

The effect of particle size on particle solubility and bioavailability has been docu-
mented by many researchers [12,33–42]. This relationship is exploited mainly in pharmacy
for the purpose of increasing the bioactivity of drugs [33–38]. A reduction in the size of
drug particles to nanometer size increases the total effective surface area and dissolution
rate. Moreover, a reduction in the particle size leads to a decrease in the thickness of the
diffusion layer surrounding the drug particles, resulting in an increase in the concentra-
tion gradient [37]. Regarding hydroxyapatite, the sizes of HAP nanoparticles affect the
degradation rate of this material [43].

The microwave hydrothermal synthesis (MHS) of hydroxyapatite nanoparticles (HAP
NPs), hereinafter referred to as GoHAP, which was recently developed in our labora-
tory, makes it possible to control their size with nanometric precision in the range of 9
to 50 nm [13]. Its advantages include the possibility of obtaining HAP NPs that meet the
requirements of purity for medical applications. This is made possible by taking advantage
of microwave heating [44] and the lack of harmful by-products of the synthesis [13]. The
literature [45–61] exhaustively describes and discusses the advantages and disadvantages
of the methods of nanohydroxyapatite synthesis, e.g., for chemical precipitation, hydrother-
mal methods, hydrolysis, sol–gel methods, microwave irradiation, chemical vapor, the
combustion technique, the pyrolysis technique, and solid-state and mechanochemical
methods. If, as producers, we wish to evaluate the quality of the obtained HAP NPs for
applications in bone-tissue regeneration, it is most important that the applied method
makes it possible to obtain a product that is repeatable in terms of size, size distribution,
shape, crystallinity, chemical purity, and phase purity [53].

In this paper, we take advantage of our original HAP-synthesis technology [13,62]
to precisely determine the effects of GoHAP size and specific surface area on the Ca2+

concentration in a PBS dispersion. If the relationship between the amount of ions released,
the size of the specific surface area, and the sizes of the hydroxyapatite nanoparticles is
known, it is possible to program hydroxyapatite resorption [42] and create biodegradable
bone grafts [53,63], or layers on titanium implants [64–66]. In addition, it is possible to
control the degradation rate and the bone-growth-stimulation potential of biodegradable
electrospun membranes coated with HAP NPs [67,68], as well as titanium implants coated
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with HAP NPs. The control of the resorption rate of HAP NPs may be the key to achieving a
balance between the rate of material degradation and accelerated bone-tissue regeneration.
This will make it possible to tailor the sizes of nanoparticles to physicians’ requirements in
specific applications.

2. Materials and Methods
2.1. Materials and Synthesis of Nanoparticles

The MHS-synthesis procedure is based on the method described in [13]. Calcium
hydroxide (pure Ca(OH)2, CHEMPUR, Piekary Śląskie, Poland) and orthophosphoric acid
(85% solution H3PO4, analytically pure, CHEMPUR, Piekary Śląskie, Poland) were used
for the synthesis. The synthesis was carried out in deionized water (0.06 µS/cm) purified
by a water double-deionization system (HLP 20 UV deionizer, Hydrolab, Straszyn, Poland,
and Ultra Toc/UV/UF, Hydrolab, Straszyn, Poland).

The GoHAP type 1 was obtained by a precipitation reaction:

10 Ca(OH)2 + 6 H3PO4 → Ca10(PO4)6(OH)2 + 18 H2O (1)

The amount of each component was adjusted to obtain calcium-deficient HAP (CD-
HAP) with a Ca/P ratio of 1.51. In the next step, the obtained suspension was poured
into a Teflon vessel with a volume of 270 cm3, which was closed tightly and inserted into
the high-pressure chamber of the homemade MSS2 microwave reactor in the batch mode
(IHPP PAS (Warsaw, Poland), ITeE-PIB (Radom, Poland), ERTEC (Wroclaw, Poland) [69]),
as described in [13]. After switching on the high-power magnetrons, microwave energy
was delivered to the vessel using a waveguide. The temperature was calculated from the
vapor–liquid equilibrium for water [69].

The power of the magnetrons was set to 3 kW. Time was counted from the moment the
power was switched on. After reaching the pre-set pressure, the mean magnetron’s power
was adjusted to keep the pre-selected pressure for a programmed time. Table 1 shows the
values of up-heating time, total time, and pressure.

Table 1. Microwave-synthesis parameters.

GoHAP Heating Time
(s)

Total Reaction
Time (s)

Pressure
(bar)

Temperature
(◦C)

Type 1 - - - -
Type 2 55 55 0.2 115
Type 3 60 90 0.3 125
Type 4 100 600 3 130
Type 5 120 600 10 175
Type 6 200 1200 50 260

For each set of parameters, we produced 6 samples with a weight of ca. 7 g. The reac-
tion products consisted of GoHAP particles and water only. The powders were separated
from water by freeze-drying for 72 h (Lyovac GT-2, SRK Systemtechnik GmbH, Riedstadt,
Germany).

2.2. Characterization of Nanoparticles

The powder X-ray diffraction (XRD) data were collected by the PANalytical X’Pert Pro
diffractometer using monochromatic Cu Kα1 radiation and the PIXcel position-sensitive
detector. The measuring range was 10–80◦ and the step was 0.03◦.

Scherrer’s formula was used to determine the mean crystallite size [70]. The shapes of
the crystallites were considerably anisotropic, and, therefore, their lengths and widths were
determined by the analysis of the XRD peak width for the 002 and 300 Bragg reflections.
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The specific surface area (SSA) was examined by the Brunauer–Emmett–Teller (BET)
isotherm method with the use of a Gemini 2360 surface analyzer (V 2.01, Micromeritics®,
Norcross, GA, USA), in accordance with ISO 9277:2010 [71].

The density (DEN) was examined using a helium pycnometer (AccuPyc II 1340,
Micromeritics®, Norcross, GA, USA), in accordance with ISO 12154:2014 [72].

Before the SSA and DEN measurements, samples were dried in a VacPrep 061 desorp-
tion station (Micromeritics®, Norcross, GA, USA) for a period of 2 h at 150 ◦C in vacuum
(0.05 mbar).

The mean diameter of GoHAP, also known as the Sauter mean diameter (SMD),
was calculated based on the SSA and DEN measurements using Equation (2), with the
assumption of a spherical shape:

SMD =
A

SSA·1018·DEN·10−21 (nm) (2)

where SMD is the Sauter mean diameter of the nanoparticle (nm), A is the shape factor,
equal to 6 for the sphere, SSA is the specific surface area (m2/g), and DEN is the density
(g/cm3). This method of determining the SMD of GoHAP was described previously [73].

The specific-surface-area and density tests were carried out in a laboratory [74], work-
ing in accordance with PN-EN ISO/IEC 17025:2018-02 [75].

Transmission-electron microscopy (TEM) imaging was carried out using a JEOL JEM
2000EX apparatus with a beam with 200 keV of energy. Images were recorded on photo-
graphic plates and then processed into digital form using a NIKON LS-8000 ED scanner
(Nikon, Tokyo, Japan). The powder samples were deposited on a 3-millimeter-diameter
copper grid covered with a perforated carbon membrane, catalog symbol S147-4H, from
Agar Scientific (Essex, UK). Observations were made using bright- and dark-field imaging.
The size distribution of the NPs was determined by the bright field and the dark field based
on the theoretical model, assuming spherical particles with a log-normal size distribution.
The diameters were determined for at least 130 particles in each sample, and a histogram
of the number of particles with diameters in the given range of values was created. The
average particle size was calculated as an arithmetic mean using Excel software, version
2308 (Microsoft, Warsaw, Poland).

2.3. Determination of the Amount of Ca2+ Ions Released

For this purpose, as well as to determine the chemical composition of the produced
samples, inductively coupled plasma—optical emission spectrometry (ICP-OES) with in-
duction in argon plasma (iCAP 6000series, Thermo Scientfic, Cambridge, United Kingdom)
was used. The samples for the tests were prepared as follows.

The nanopowders were dried for 12 h at (100 ± 2 ◦C). Next, 0.1 g of each type of
powder was weighed and placed in plastic containers with a volume of 50 mL. Subsequently,
20 mL of the phosphate-buffered saline (PBS) solution, pH = 7.4 ± 0.1 (Sigma Aldrich, Saint
Louis, MS, USA), was added to the containers using a pipette. The sealed plastic containers
were placed in a water bath (Heating Bath B-491, BUCHI, Flawil, Switzerland) at 37 ± 1 ◦C.
The batch was shaken in the longitudinal motion at 2 Hz. Ion-concentration analyses using
the ICP-OES technique were carried out on the following days: 1, 3, 7, 9, 14. For each time
point, analyses of 2 samples of each type were carried out.

The PBS samples for the ICP-OES tests were collected by filtering the particles from
the suspension.

To determine the chemical composition, 0.2 g each of GoHAP type 1–type 6 was col-
lected from the containers and transferred to the Teflon (polytetrafluoroethylene) container
of the microwave mineralizer (Magnum II, Ertec, Wroclaw, Poland). Next, 20 mL of HCL
and 4 mL of HNO3 were added. After 10 min of treatment at a power of 800 W, the powder
sample was dissolved. An ICP analysis was then carried out to determine the content and
ratio of Ca2+, PO4

3− ions, and trace elemental impurities: Mg, Si, Al, Fe, Na, Mn. The
procedure was repeated for each powder sample.
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An analysis of pH and conductivity of the PBS buffer was performed using a pH
meter (SevenExcellennce, Multiparameter, Mettler Toledo, Greifensee, Switzerland). An
InLab Expert Pro-ISM pH electrode with a built-in temperature sensor was mounted to
the instrument to measure pH, and a conductivity probe, InLab 731-ISM Cond (Mettler
Toledo, Greifensee, Switzerland), was used to measure conductivity. The temperature of
the buffers was maintained at 35 ◦C using an electric heater (babyono, Natural Nursing,
Poznan, Poland). The pH electrode was calibrated with Mettler Toledo technical buffers at
three pH points: 4.03, 7.00, and 9.01, respectively. Measurements were made by immersing
the electrode in the PBS solutions, which were prepared in the same manner as for the
ICP-OES measurements. After each measurement, the electrode was rinsed with deionized
water with a conductivity of 0.06 µS/cm and treated in a double deionization system (HLP
20 UV, Hydrolab, Straszyn, Poland, and Ultra Toc/UV/UF, Hydrolab, Straszyn, Poland).

3. Results
3.1. Synthesis of Nanoparticles

The MSS2 reactor allows the rapid heating of reactants, a rapid pressure increase,
fast cooling, and, thus, excellent control of the reaction time [69]. Figure 1 shows the
pressure–time plots for the GoHAP synthesis. Table 1 lists the produced GoHAP types
depending on the process parameters. Time was counted from the moment the magnetron
was switched on and the start of the power delivery. The inset in Figure 1 reveals that
there was a delay of ca. 43 s between the moment power was switched on to the moment
when the pressure sensors of the reactor registered an increase in pressure. Thus, after 43 s,
the pressure started to exceed the atmospheric pressure, indicating that the temperature
exceeded 100 ◦C. The heating rate was in the range of 1–2 ◦C/s.
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Figure 1. Pressure–time plots for the GoHAP synthesis of size-controlled nanoparticles (GoHAP
Type 2–Type 6). Time is counted from the moment the magnetron was switched on and the start of
power delivery.

The operation of the magnetrons was switched from full power to the pulsed mode so
that the mean power could be adjusted to keep a constant pressure after the heating time.
This allowed the nanoparticles to grow. For GoHAP type 2, the heating was interrupted
after 55 s and the power was switched off. The heating time was 60 s for the GoHAP type 3.
To shorten the time needed to produce larger particles, the pressure and temperature were
raised. The particle-growth phase was 500 s for the GoHAP type 4, 480 s for the GoHAP
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type 5, and 1000 s for the GoHAP type 6. The unique characteristics of the microwave
hydrothermal technology using the MSS2 reactor in terms of time and pressure control are
evident.

3.2. Characterization of Nanoparticles

The characteristics of the GoHAP nanomaterial—the specific surface area, density,
and particle size of the produced GoHAP hydroxyapatite—are presented in Tables 2 and 3.
When combining information from Tables 1 and 3, it can be seen that an increase in the
process pressure and temperature or time leads to an increase in the particle size.

Table 2. GoHAP characterization. Standard deviation is given for each value (±).

GoHAP Specific Surface Area,
as (m2/g)

Skeleton
Density,

ρs ± SD (g/cm3)

Type 1 240 2.89 ± 0.01
Type 2 211 2.90 ± 0.01
Type 3 183 2.92 ± 0.01
Type 4 108 2.98 ± 0.01
Type 5 67 3.05 ± 0.01
Type 6 51 3.05 ± 0.01

Table 3. Comparison of the GoHAP NP sizes with different methods. D(002)—crystallite size for
crystal plane 002. D(300)—crystallite size for crystal plane 300. Standard deviation is given for each
value (±). d—mean particle size (diameter); SD—standard deviation; SSA—specific surface area;
TEM—transmission-electron microscopy.

GoHAPTM
Mean Particle Size

Based on TEM Method,
dTEM ± SD (nm)

Mean Particle Size
Based on SSA, dSSA

± SD (nm)

Mean Size of Crystallites Based on Scherrer’s Formula

Length
D(002) ± SD (nm)

Width
D(300) ± SD (nm)

Aspect Ratio
(D(002)/D(300))

Type 1 8 ± 4 9 ± 1 14 ± 7 5 ± 1 2.8
Type 2 13 ± 4 10 ± 1 21 ± 12 5 ± 2 4.2
Type 3 13 ± 6 11 ± 1 29 ± 15 17 ± 7 1.7
Type 4 20 ± 9 19 ± 2 33 ± 17 23 ± 8 1.4
Type 5 30 ± 12 29 ± 3 43 ± 20 27 ± 10 1.6
Type 6 36 ± 13 39 ± 4 51 ± 24 32 ± 11 1.6

Figure 2 presents the particle-size distributions of the GoHAP particles, which were
obtained from the analysis of the TEM images. In line with the increase in the synthesis
temperature and in the synthesis time, the increase in the average particle size and in the
size distribution is visible. One should note the results of the sizes of the Type 2 and Type 3
samples: despite the identical average particle size (13 nm), these samples had different
particle-size distributions.

Figure 3 shows a correlation between the density and the specific surface area. The
greater the mean particle size (and, thus, the smaller the specific surface area), the greater
the density.

Figure 4 shows X-ray-diffraction spectra for all the GoHAP nanoparticles studied. The
diffraction peaks correspond to pure hydroxyapatite. The decrease in the width of the
diffraction peaks indicates the increasing mean size of the GoHAP nanoparticles.
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Table 4 shows the Ca/P ratio for the GoHAP type 1–type 6 nanoparticles. The ICP-OES
analysis showed that they consisted of calcium and phosphorus, in a ratio of 1.52 ± 0.01.
In addition, minor contamination with Mg, Si, Al, Fe, Na, and Mg was observed (Table 5).
The ratio of calcium to phosphorus indicates that the produced nanoparticles represent
calcium-deficient hydroxyapatite (CDHA). The ion-substituted CDHA has Na+, K+, Mg2+,
Sr2+ for Ca2+, CO3

2− for PO4
3− or HPO4

2−, and F−, Cl−, CO3
2− for OH-, and with water

it forms biological apatite —the main inorganic part of animal and human bone in normal
and pathological calcifications [76,77].
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Table 4. Calcium-to-phosphate molar ratio of GoHAP Type 1–Type 6. Data obtained from ICP-OES
analyses.

GoHAP Calcium
(mol)

Phosphorus
(mol)

Calcium-Phosphorus
(Ca/P) Ratio

Type 1 8.29 5.44 1.52
Type 2 8.09 5.36 1.51
Type 3 9.67 6.40 1.51
Type 4 8.71 5.74 1.52
Type 5 5.38 3.54 1.52
Type 6 9.29 6.09 1.53

Table 5. Impurity content of GoHAP type 1–type 6. Data obtained from ICP-OES analyses.

GoHAP Magnesium
(wt%)

Silicon
(wt%)

Aluminum
(wt%)

Iron
(wt%)

Sodium
(wt%)

Sodium
(wt%)

Type 1 0.225 0.053 0.019 0.021 0.082 0.0009
Type 2 0.219 0.056 0.018 0.018 0.083 0.0009
Type 3 0.258 0.049 0.019 0.020 0.074 0.010
Type 4 0.232 0.054 0.019 0.020 0.087 0.010
Type 5 0.144 0.043 0.013 0.014 0.073 0.006
Type 6 0.252 0.050 0.019 0.026 0.083 0.010

Mean value 0.222 ± 0.041 0.051 ± 0.005 0.018 ± 0.002 0.020 ± 0.004 0.080 ± 0.006 0.006 ± 0.004

The total impurity content was 0.40 ± 0.06 wt.%. The differences in impurity content
between the GoHAP types were less than 15% of the total impurity content.

The TEM images (Figures 5 and 6) obtained using the bright- and dark-field techniques
showed differences between the shapes and sizes of the GoHAP type 1–type 6 nanoparticles.
The GoHAP type 1 nanoparticles had the smallest sizes and a needle-like shapes. A very
similar shape was obtained for the GoHAP Type 2 particles. As the nanoparticles grew,
they took on increasingly spherical shapes (GoHAP type 3–type 6).
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3.3. Calcium-Ion-Release Results

This study showed a strong effect of the specific surface area of GoHAP on the amount
of ions released (Figure 7). The release of calcium ions at the highest concentrations, i.e.,
ca. 18 mg/L, was observed for the GoHAP type 1 with a specific surface area of 240 m2/g
and an average nanoparticle size of 9 nm. As the nanoparticle size increased and the
specific surface area decreased, the amount of calcium ions released into the buffer solution
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decreased. Compared to the GoHAP type 1 (SSA 240 m2/g), a significant decrease in
solubility and in the associated calcium-ion release was already observed for the slightly
larger GoHAP type 2 nanoparticles, with an average nanoparticle size of 10 nm (183 m2/g),
and the GoHAP type 3, with an average nanoparticle size of 11 nm (108 m2/g). The
decrease in the amount of released Ca2+ ions was ca. ↓7 mg/L, with a difference in the
developed specific surface area of 30 m2 /g (GoHAP type 2) and ca. ↓12 mg/L, and with
a difference in the developed specific surface area of 57 m2/g (GoHAP type 3) compared
to the GoHAP type 1. Small amounts of Ca2+-ion release, ranging from ca. 2.3 mg/L to
4.1 mg/L, were observed for the GoHAP type 4–6 nanoparticles. Therefore, it seems that
there is a threshold nanoparticle size at 11 nm and a threshold SSA at 108 m2/g, above
which Ca2+-ion release becomes size-independent.
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Figure 7. Concentrations of calcium ions released from GoHAP Type 1–Type 6.

In each of the GoHAP types studied, the Ca2+-ion concentration stabilized after 1 day
in the buffer solution (Figure 7). After this time, nearly constant levels of calcium-ion
release were observed, which indicates that an equilibrium state was achieved.

The changes in the conductivity and pH of the solution were correlated with the
amount of calcium ions released (Figures 8 and 9). The largest increase in conductivity was
observed when the GoHAP type 1 nanoparticles with the smallest sizes and the highest
specific surface areas were dissolved (Figure 8). The increase in conductivity decreased as
the specific surface area of the GoHAP decreased.

During the calcium-ion release tests, the pH increased steadily, depending on the
development of the specific surface area, and maintained the following relationship:
highest specific surface area—highest pH; lowest development of specific surface area
of nanoparticles—lowest pH (Figure 9). However, the differences in the pH values of
the solutions during the solubility testing of the GoHAP type 1 (240 m2/g) and type 6
(51 m2/g) nanoparticles were small and accounted for about 0.05 points on the pH scale.
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4. Discussion
4.1. Structural and Chemical Characterization

The studies of the GoHAP nanostructure confirmed a gradual increase in the particle
size in line with the increase in time and in pressure and temperature of the microwave syn-
thesis. In addition, the particle shape transformed gradually from a plate or a needle to an
ellipsoid. The possible mechanism underlying the change in the shapes of GoHAP particles
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was described in the paper by Kozerozhets et al. [78]. Furthermore, the pycnometric density
of the particles gradually increased in line with the time and with the pressure and temper-
ature of the synthesis. The obtained GoHAP nanoparticle samples had a lower density than
the theoretical density of hydroxyapatite, which is 3.15 g/cm3 [79,80]. This correlation was
previously found for zirconia (ZrO2) nanoparticles [81] and doped and undoped zinc oxide
(ZnO) nanoparticles [82–84]. It is attributed to the effect of the surfaces of nanoparticles on
their mean density. Even nanoparticles with the maximum possible degree of crystallinity
have dangling bonds on their surfaces, to which -OH groups in oxides may attach [81]. In
addition to the presence of hydroxides, another reason for the density–size correlation is
that the thickness of the amorphous phase on the nanoparticle surface decreases as the size
of the nanoparticles increases [83]. In a pycnometer study [85,86], such surfaces contributed
to the volume occupied by the nanoparticle, so that the mean density measured decreased
as the specific surface area increased.

The hydroxyapatite unit cell (both synthetic and natural) usually displays a hexagon
crystal system, with a P63/m space group [87,88], even if the occurrence of monoclinic
HAP is well-known [89]. The crystal structure of the GoHAP type 1 sample was identical
to that of human bone [90], while the crystal structure of the GoHAP type 6 sample was
identical to that of human tooth enamel [13]. The XRD data show that the particles had
non-spherical shapes. The smallest, type 1 and type 2, had platelet shapes, with the larger
surface parallel to the (100) planes. The aspect ratio varied for the particles with SSA values
equal to or above 183 m2/g in the range of 1.7–4.2.

The differences between the sizes, as measured by means of the XRD method and
calculated from the SSA, were not significant, because the SSA delivered a mean value,
while the XRD data depended on the axis selected for the analysis. Further, in the case of
SSA, the smallest particles may have delivered the highest contribution to the surface area,
while in the case of XRD studies, they may have disappeared into the background due to
very broad peaks.

When comparing the results of the crystallite sizes calculated from the XRD data with
the results of the average particle sizes calculated from the TEM images, it was found
that they were virtually identical or fell within the standard deviation. This means that
monocrystalline hydroxyapatite was obtained in all the samples (one particle was built
of one crystallite). The results of the TEM imaging are consistent with those of the XRD
analysis—for the smallest particles, especially type 1 and type 2, the shape was platelet- or
needle-like, while for the larger particles, the shape was close to spherical.

The structural characterizations showed that the MHS method permits the production
of a high-purity nanomaterial with a constant chemical composition as a function of size.
The density increases in line with the increase in size, due to the decreasing fraction of atoms
situated on the surface. The smallest particles, with SSA values below 183 m2/g, have a
highly non-equilibrated elongated shape, which is characteristic of particles formed in a
short time. For longer times or higher temperatures, the aspect ratio of the nanoparticles
decreases, tending towards greater sphericity.

Taking all these results into consideration, it is justified to regard SSA as the main
characteristic parameter of the nanomaterial, on which all other properties, size, shape, and
density, depend.

Regarding the chemical composition, no SSA effect was detected. The calcium/ phos-
phorus ratio for calcium-deficient hydroxyapatite (CDHA) (Ca10x(HPO)4x(PO)46−x(OH)2−x
(0 < x < 1) is 1.5–1.67. As shown in Table 3, x = 1.52, the calcium/phosphorus ratio cor-
responds to human HAP. A calcium-deficient composition was selected specifically for
this study, so that the synthetic GoHAP would mimic the natural nano-HAP as much
as possible.

The total impurity content, as shown in Table 4, was 0.40 ± 0.06 wt.%. The differences
in the impurity content between the various GoHAP types were less than 15% of the total
impurity content.
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4.2. Ion-Release Study

For standard commercial hydroxyapatite with particle sizes much larger than those of
nanomaterials, the most important parameters are the molar Ca/P ratio, basicity/acidity,
and solubility. The lower the Ca/P molar ratio, the more acidic the powder and the more
water-soluble the calcium orthophosphate [76,77]. In this respect, hydroxyapatite is one of
the most stable calcium phosphates.

However, as the present study shows, a reduction in the sizes of HAP nanoparticles
results in active nanoparticles that release calcium ions, i.e., the stability of the particles
decreases. They are therefore bioactive and potentially biodegradable. For nanoparticles
smaller than 39 nm immersed in PBS, calcium-ion release is observed, but solubility in-
creases significantly for a threshold size lower than 11 nm. The greatest differences in
nanoparticle solubility were observed in the nanoparticles with specific surface areas in the
range of 240–183 m2/g (Figure 10).
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GoHAP type 1–type 6.

Such properties are sought and explored in the field of nanotechnology, in which
the chemical composition of the material is constant, but the size of the particles or the
crystallites of the material are variable. This was the case in the present paper. The specific
surface area is defined as the external surface area of a substance per unit mass of that
substance. This ratio depends on the parameters of size and shape; the smaller the solid
and the more needle-like its shape, the greater the specific surface area. In nanoparticles
with dimensions of several nm, large fractions of atoms are situated on the surface and,
therefore, their free energy is high compared to large particles [91,92] (Figure 11).
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calcium-ion release. SSA—specific surface area; MPS—mean particle size.

The concentration of Ca2+ ions in PBS depends on the SSA value, and not on time. This
effect can be explained in terms of an equilibrium between the liquid phase and the specific
surface of the solid phase, rather than its mass. This effect is in line with the treatment of the
specific surface area (per unit volume or per unit weight) as an independent thermodynamic
variable. We regard SSA as the crucial parameter. This is because the sizes of nanoparticles
are difficult to determine both with microscopy methods and with XRD methods, especially
for complicated shapes, and when there is a size distribution. A focus on the specific
surface area as a key parameter is described in multiple papers [93,94]. The effect of the
specific surface area’s value (above 183 m2/g) on the solubility of HAP nanoparticles,
which we observed, was explained in the paper by Fu et al. [95]. It should be noted that Fu
et al. [95] assumed spherically shaped nanocrystals for the purpose of their calculations.
The calculated results of the thermodynamic properties of the surfaces showed that the
limiting size (diameter) of the nanocrystals was 20 nm. When the size was less than 20 nm,
the effect of the particle size on the thermodynamic properties of the surface increased and
deviated from linear variation. Spherical HAP nanoparticles measuring 20 nm have specific
surface areas of ca. 100 m2/g and the assumption of a diameter of less than 20 nm (specific
surface area above 100 m2/g) was confirmed by our four samples, i.e., from GoHAP type 1
(240 m2/g) to Go HAP type 4 (108 m2/g). Fu et al. [95] also discovered that an important
factor, in addition to the specific surface area value itself, in the thermodynamic properties
is the shape of the nanocrystals. With an identical equivalent diameter of particles, the
more the shape deviates from sphere, the stronger the thermodynamic properties of the
surface (absolute value) [95]. The shape-criterion and the specific-surface-area values were
displayed only by the GoHAP type 1 and GoHAP type 2 samples, in which we observed
significantly increased hydroxyapatite solubility. To the best of our knowledge, our study
is the first to report the effect of the specific surface area’s value on nanohydroxyapatite
solubility [39,96–116]. It must be underlined that the novelty of our paper in relation to
the papers reported previously [39,96–116] is in the values of the specific surface area of
the HAP-NP samples that we used in the solubility tests (from 51 m2/g to 240 m2/g). A
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good comparative example is the paper by Tang et al. [39], who examined the size effects in
the dissolution of hydroxyapatite for HAP-NP samples with specific surface areas of 24.2
m2/g, 32.4 m2/g, and 55.1 m2/g. The dissolution studies the authors carried out for the
different undersaturations lasted only 100 min. Our tests lasted 11 days and referred to
the state of an excess amount of solid HAP NPs in the suspension relative to the solubility
product (which was significantly above the state of equilibrium). Tang et al. [39] discovered
that in unsaturated biological environments, there is a metastable HAP phase that depends
on the effects of particle sizes, resulting in the self-inhibition of dissolution, or even the
suppression of the dissolution reaction.

If the ion concentration, the volume of the PBS, and the weights of the nanoparticles
are known, it is possible to calculate the amount of dissolved GoHAP. For the highest Ca2+-
ion concentration, 18 mg/l, the weight of the dissolved hydroxyapatite was 0.9 mg, i.e.,
0.9% of the sample. This is a considerable amount, which dissolved in just one day in the
PBS. It is plausible that for each sample, the smallest particles underwent dissolution. In the
further studies, we will examine the effect of storage in the solution on the nanostructure
of the particles.

Further, an effect of the surface development on the pH and the conductivity of the
solution was observed. The changes in the pH and conductivity ranged from ca. 3.24 to ca.
3.29 with an increase in the SSA value. Although the calcium-ion concentration stabilized
after one day, the conductivity values stabilized after three days. However, the conductivity
can hardly be correlated with calcium release only, as it depends on the overall composition
of the solution, with a range of ions present.

Regarding the practical implications of this study for the development of nano-HAP as
a material to enhance bone regeneration, there are two contradictory trends to be considered.
On one hand, the larger the specific surface area, the greater the activity of the particles in
the ion release and, possibly, in the biodegradation. On the other hand, the thermodynamic
stability of these particles is limited, as a very high SSA value relates to high energy per unit
weight or volume. This may limit the application of these materials because the shelf time
would be short. It seems, from the present study, that the optimal SSA value is between
180 m2/g and 200 m2/g. For these values, the aspect ratio of the particles decreases to a
stable level, so that the shape of the particles does not change in a significant way with time
and possible further SSA decreases. On the other hand, the calcium-ion release remains at
a high level. The MHS technology makes it possible to tune the particle size in this narrow
gap of values.

Appropriate calcium-phosphate homeostasis is essential for normal bone function. In
cases of large bone defects, insufficient calcium-ion release can contribute to a lack of or
very slow bone-tissue regeneration. On the other hand, excessive calcium release can lead
to undesirable tissue calcification. Therefore, it is necessary to find the optimal amount of
calcium at which the calcium signal intensifies the induction of gene expression toward
bone cells and thereby accelerates bone-tissue regeneration, which will be the subject of
our future work.

5. Conclusions

Hydroxyapatite nanoparticles with the following average sizes were obtained with
the use of the original method of microwave hydrothermal synthesis: 39 nm (51 m2/g),
29 nm (67 m2/g), 19 nm (108 m2/g), 11 nm (183 m2/g), 10 nm (211 m2/g), and 9 nm
(240 m2/g). By varying the temperature and synthesis time, microwave hydrothermal
synthesis makes it possible to precisely tune the specific surface area, shape, and density
of hydroxyapatite nanoparticles, while keeping their chemical composition constant. A
threshold specific surface area of 183 m2/g (11 nm) was found; above this threshold, the
solubility of hydroxyapatite nanoparticles in phosphate-buffered saline increases signifi-
cantly. Particles with optimal properties for application as bone-graft materials should have
a specific surface area value in the range of 180–200 m2/g. The calcium release from the
nanoparticles immersed in phosphate-buffered saline increased strongly above this specific
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surface area value. This effect can be exploited to produce bioactive hydroxyapatite. The
nanoparticle size is therefore crucial when designing materials for bone-tissue regeneration.
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