Nanopowder GoHAP[®] (hydroxyapatite)

Thanks to unique world-wide reactors of microwave solvothermal synthesis we are able to sythesise HAp nanopowders in reaction carried out in water solution. The hydroxyapatite is produced in reaction of the pure Ca(OH)₂ and pure H₃PO₄.

Specific	240m ² /g
surface area	, 0
Density	2.93 g/cm ³
Particle size	6-9 nm
Molar ratio	1.57- 1.59
Ca/P	

Ca(OH)₂ + H₃PO₄ →HAp

XRD of GoHAP and apatite from pig bone

Application: regenerative medicine

The developed method enables the synthesis of pure, full crystalline hexagonal and highly biocompatible hydroxyapatite called GoHAP. A degradation test and a biocompatibility study in vitro using human osteoblast cells were conducted and described on the papers:

- 1. Hydroxyapatite nanopowder synthesis with a programmed resorption rate, Journal of Nanomaterials,vol 2012, 1-9, 2012.
- 2. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation, International Journal of Nanomedicine, 8, 1-16, 2013.

Laboratory of NanostructuresInstitute of High Pressure Physics
Polish Academy of Science

